\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Accessibility properties of abnormal geodesics in optimal control illustrated by two case studies

  • * Corresponding author: Jérémy Rouot

    * Corresponding author: Jérémy Rouot 
Abstract / Introduction Full Text(HTML) Figure(9) Related Papers Cited by
  • In this article, we use two case studies from geometry and optimal control of chemical network to analyze the relation between abnormal geodesics in time optimal control, accessibility properties and regularity of the time minimal value function.

    Mathematics Subject Classification: Primary: 49K15, 49L99, 53C60, 58K50.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Unfolding semicubical cusp

    Figure 2.  Quickest nautical path as a miniversal unfolding of the generic singularity of the abnormal geodesic

    Figure 3.  (top) Singular vector field $ X_s $ on the surface $ D''(\tilde q) = 0 $ for the semi-normal form constructed in the proof of Proposition 2.8 for $ \delta_1 = \delta_2 = 0 $ and random values for the others coefficients $ a_{ij}, b_{ij}, c_{ij} $ yielding $ \lambda = -4 $. (bottom) Corresponding strong (blue) and weak (white) current domains. The curve $ \{\|F_0(q)\|_g = 1\} $ is not regular

    Figure 4.  Hyperbolic and abnormal geodesics in a neighbourhood of the collinearity set

    Figure 5.  Local synthesis near $ \mathcal{E} $ in the generic case

    Figure 6.  Local synthesis near $ \mathcal{E} $ in the codimension $ 2 $ case for $ b<0 $. The dashed curves are in the half-space $ x<0 $

    Figure 7.  Local synthesis near $ \mathcal{E} $ in the codimension 2 case for $ b>0 $

    Figure 8.  Strata of the surface $ S $ separating the regions of $ U $ where the control is $ \pm 1 $ for the model (18) with $ b = b_1 = 1, \ c = 0 $. We also represent the regions where $ \sigma_\pm $ intersect $ N $ for $ t<0 $ and several trajectories which generate a switching locus and a splitting locus

    Figure 9.  Minimum time $ t^* = \max(t_1^{\varepsilon}, t_2^{\varepsilon}, t_3) $ to reach $ (0, w, s)\in N $ from a neighbourhood $ U $ of $ 0 $ for the model (18) with $ b = b_1 = 1, \ = c = 0 $. The exceptional locus is $ \mathcal{E}: y = -z^2 $ and the singular locus is $ \mathcal{S}: n\cdot [Y, X](q) = 0: z = 0 $

  • [1] V. I. Arnol'd, The Theory of Singularities and Its Applications, Lezioni Fermiane. Fermi Lectures, Accademia Nazionale dei Lincei, Rome; Scuola Normale Superiore, Pisa, 1991.
    [2] V. I. Arnol'd, Dynamical systems VI, Singularity Theory I, Encyclopedia of mathematical sciences, Springer Verlag 1993.
    [3] T. BakirB. Bonnard and J. Rouot, Geometric optimal control techniques to optimize the production of chemical reactors using temperature control, Annu. Rev. Control, 48 (2019), 178-192.  doi: 10.1016/j.arcontrol.2019.09.005.
    [4] B. Bonnard and M. Chyba, Singular Trajectories and Their Role in Control Theory, Mathématiques & Applications 40 Springer-Verlag Berlin Heidelberg, 2003.
    [5] B. Bonnard and I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, Forum Math., 5 (1993), 111-159.  doi: 10.1515/form.1993.5.111.
    [6] B. BonnardG. Launay and M. Pelletier, Generic classification of time-minimal syntheses with target of codimension one and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 55-102.  doi: 10.1016/s0294-1449(97)80149-7.
    [7] C. Carathéodory, Calculus of Variations and Partial Differential Equations of the First Order. Part I: Partial Differential Equations of the First Order, Inc., San Francisco-London-Amsterdam, 1965.
    [8] J. A. Dieudonné and J. B. Carrell, Invariant Theory, Old and New, Academic Press, New York, 1971.
    [9] A. J. Krener, The high order maximal principle and its application to singular extremals, SIAM J. Control Optim., 15 (1977), 256-293.  doi: 10.1137/0315019.
    [10] I. Kupka, Analyse des systémes. Some problems in accessibility theory, Astérisque, 75-76; Soc. Math. France, Paris, (1980), 167-176.
    [11] I. Kupka, Geometric theory of extremals in optimal control problems. I. The fold and Maxwell case, Trans. Amer. Math. Soc., 299 (1987), 225-243.  doi: 10.2307/2000491.
    [12] G. Launay and M. Pelletier, The generic local structure of time-optimal synthesis with a target of codimension one in dimension greater than two, J. Dynam. Control Systems, 3 (1997), 165-203.  doi: 10.1007/BF02465893.
    [13] J. Martinet, Singularities of Smooth Functions and Maps, London Mathematical Society Lecture Note Series, 58. Cambridge University Press, Cambridge-New York, 1982.
    [14] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon Press Book The Macmillan Company, New York 1964
    [15] R. Thom, Structural Stability and Morphogenesis, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA 1989.
    [16] R. J. Walker, Algebraic Curves, Springer-Verlag, New York, 1978.
    [17] H. Whitney, On singularities of mappings of Euclidean spaces. I. Mappings of the plane into the plane, Ann. of Math., 62 (1955), 374-410.  doi: 10.2307/1970070.
    [18] E. Zermelo, Über das Navigations problem bei ruhender oder veränderlicher wind-verteilung, Z. Angew, Math. Mech., 11 (1931), 114-124. 
  • 加载中

Figures(9)

SHARE

Article Metrics

HTML views(3136) PDF downloads(253) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return