Studied here is the Kawahara equation, a fifth-order Korteweg-de Vries type equation, with time-delayed internal feedback. Under suitable assumptions on the time delay coefficients, we prove that the solutions of this system are exponentially stable. First, considering a damping and delayed system, with some restriction of the spatial length of the domain, we prove that the energy of the Kawahara system goes to $ 0 $ exponentially as $ t \rightarrow \infty $. After that, by introducing a more general delayed system, and by introducing suitable energies, we show using the Lyapunov approach, that the energy of the Kawahara equation goes to zero exponentially, considering the initial data small and a restriction in the spatial length of the domain. To remove these hypotheses, we use the compactness-uniqueness argument which reduces our problem to prove an observability inequality, showing a semi-global stabilization result.
| Citation: |
| [1] |
F. D. Araruna, R. A. Capistrano-Filho and G. G. Doronin, Energy decay for the modified Kawahara equation posed in a bounded domain, J. Math. Anal. Appl., 385 (2012), 743-756.
doi: 10.1016/j.jmaa.2011.07.003.
|
| [2] |
L. Baudouin, E. Crépeau and J. Valein, Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback, IEEE Trans. Automat. Control, 64 (2019), 1403-1414.
doi: 10.1109/TAC.2018.2849564.
|
| [3] |
N. G. Berloff and L. N. Howard, Solitary and periodic solutions of nonlinear nonintegrable equations, Studies in Applied Mathematics, 99 (1997), 1-24.
doi: 10.1111/1467-9590.00054.
|
| [4] |
A. Biswas, Solitary wave solution for the generalized kawahara equation, Applied Mathematical Letters, 22 (2009), 208-210.
doi: 10.1016/j.aml.2008.03.011.
|
| [5] |
J. L. Bona, S. M. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain, Comm. Partial Differential Equations, 28 (2003), 1391-1436.
doi: 10.1081/PDE-120024373.
|
| [6] |
J. L. Bona, S. M. Sun and B.-Y. Zhang, A non-homogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain. II, J. Differential Equations, 247 (2009), 2558-2596.
doi: 10.1016/j.jde.2009.07.010.
|
| [7] |
J. P. Boyd, Weakly non-local solitons for capillary-gravity waves: Fifth degree Korteweg-de Vries equation, Phys. D, 48 (1991), 129-146.
|
| [8] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.
|
| [9] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti, V. Komornik and J. H. Rodrigues, Global well-posedness and exponential decay rates for a KdV-Burgers equation with indefinite damping, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 31 (2014), 1079-1100.
doi: 10.1016/j.anihpc.2013.08.003.
|
| [10] |
E. Cerpa, Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain, SIAM J. Control Optim., 46 (2007), 877-899.
doi: 10.1137/06065369X.
|
| [11] |
E. Cerpa and E. Crépeau, Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 26 (2009), 457-475.
doi: 10.1016/j.anihpc.2007.11.003.
|
| [12] |
J. M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with a critical length, J. Eur. Math. Soc., 6 (2004), 367-398.
|
| [13] |
S. B. Cui, D. G. Deng and S. P. Tao, Global existence of solutions for the Cauchy problem of the Kawahara equation with $\mathit{L} _{\mathit{2}}$ initial data, Acta Math. Sin. (Engl. Ser.), 22 (2006), 1457-1466.
doi: 10.1007/s10114-005-0710-6.
|
| [14] |
R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713.
doi: 10.1137/0326040.
|
| [15] |
G. G. Doronin and N. A. Larkin, Kawahara equation in a bounded domain, Discrete Contin. Dyn. Syst., 10 (2008), 783-799.
doi: 10.3934/dcdsb.2008.10.783.
|
| [16] |
A. V. Faminskii and N. A. Larkin, Initial-boundary value problems for quasilinear dispersive equations posed on a bounded interval, Electron. J. Differential Equations, 1 (2010), 1-20.
|
| [17] |
O. Goubet and J. Shen, On the dual Petrov-Galerkin formulation of the KdV equation, Advances Differential Equations, 12 (2007), 221-239.
|
| [18] |
H. Hasimoto, Water waves, Kagaku, 40 (1970), 401-408.
|
| [19] |
J. K. Hunter and J. Scheurle, Existence of perturbed solitary wave solutions to a model equation for water waves, Physica D, 32 (1988), 253-268.
doi: 10.1016/0167-2789(88)90054-1.
|
| [20] |
T. Iguchi, A long wave approximation for capillary-gravity waves and the Kawahara equations, Bull. Inst. Math. Acad. Sin. (N.S.), 2 (2007), 179-220.
|
| [21] |
L. Jin, Application of variational iteration method and homotopy perturbation method to the modified Kawahara equation, Mathematical and Computer Modelling, 49 (2009), 573-578.
doi: 10.1016/j.mcm.2008.06.017.
|
| [22] |
T. Kakutani, Axially symmetric stagnation-point flow of an electrically conducting fluid under transverse magnetic field, J. Phys. Soc. Japan, 15 (1960), 688-695.
doi: 10.1143/JPSJ.15.688.
|
| [23] |
T. Kawahara, Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan, 33 (1972), 260-264.
|
| [24] |
D. Kaya and K. Al-Khaled, A numerical comparison of a Kawahara equation, Phys. Lett. A, 363 (2007), 433-439.
|
| [25] |
V. Komornik and C. Pignotti, Well-posedness and exponential decay estimates for a Korteweg-de Vries-Burgers equation with time-delay, Nonlinear Analysis, 191 (2020), 111646, 13 pp.
doi: 10.1016/j.na.2019.111646.
|
| [26] |
V. Komornik, D. L. Russell and B. Y. Zhang, Stabilization de l'équation de Korteweg-de Vries, C. R. Acad. Sci. Paris, Séries I Math., 312 (1991), 841-843.
|
| [27] |
F. Linares and A. F. Pazoto, On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping, Proc. Amer. Math. Soc., 135 (2007), 1515-1522.
doi: 10.1090/S0002-9939-07-08810-7.
|
| [28] |
J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30 (1988), 1-68.
doi: 10.1137/1030001.
|
| [29] |
L. Molinet and Y. Wang, Dispersive limit from the Kawahara to the KdV equation, Journal of Differential Equations, 255 (2013), 2196-2219.
doi: 10.1016/j.jde.2013.06.012.
|
| [30] |
S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.
doi: 10.1137/060648891.
|
| [31] |
A. F. Pazoto, Unique continuation and decay for the Korteweg-de Vries equations with localized damping, ESAIM Control Optim. Calc. Var., 11 (2005), 473-486.
doi: 10.1051/cocv:2005015.
|
| [32] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1.
|
| [33] |
G. Perla Menzala, C. F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping, Quarterly of Appl. Math., 1 (2002), 111-129.
doi: 10.1090/qam/1878262.
|
| [34] |
N. Polat, D. Kaya and H. I. Tutalar, An analytic and numerical solution to a modified Kawahara equation and a convergence analysis of the method, Appl. Math. Comput., 179 (2006), 466-472.
doi: 10.1016/j.amc.2005.11.104.
|
| [35] |
Y. Pomeau, A. Ramani and B. Grammaticos, Structural stability of the Korteweg-de Vries solitons under a singular perturbation, Physica D, 31 (1988), 127-134.
doi: 10.1016/0167-2789(88)90018-8.
|
| [36] |
L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 2 (1997), 33-55.
doi: 10.1051/cocv:1997102.
|
| [37] |
L. Rosier and B. Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain, SIAM J. Control Opt., 45 (2006), 927-956.
doi: 10.1137/050631409.
|
| [38] |
D. L. Russell and B. Y. Zhang, Controllability and stabilizability of the third order linear dispersion equation on a periodic domain, SIAM J. Cont. Optim., 31 (1993), 659-676.
doi: 10.1137/0331030.
|
| [39] |
J.-C. Saut and B. Scheurer, Unique continuation for some evolutions equations, J. Diff. Equations, 66 (1987), 118-139.
doi: 10.1016/0022-0396(87)90043-X.
|
| [40] |
J. Simon, Compact sets in the space $L^{p}\left(0, T;B\right) $, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360.
|
| [41] |
J. Valein, On the asymptotic stability of the Korteweg-de Vries equation with time-delayed internal feedback, Math. Control Relat. Fields, 12 (2022), 667-694.
doi: 10.3934/mcrf.2021039.
|
| [42] |
C. F. Vasconcellos and P. N. da Silva, Stabilization of the linear Kawahara equation with localized damping, Asymptotic Analysis, 58 (2008), 229-252.
doi: 10.3233/ASY-2008-0895.
|
| [43] |
C. F. Vasconcellos and P. N. da Silva, Erratum: Stabilization of the linear Kawahara equation with localized damping, Asymptotic Analysis, 66 (2010), 119-124.
doi: 10.3233/ASY-2010-0987.
|
| [44] |
C. F. Vasconcellos and P. N. da Silva, Stabilization of the Kawahara equation with localized damping, ESAIM Control Optim. Calc. Var., 17 (2011), 102-116.
doi: 10.1051/cocv/2009041.
|
| [45] |
E. Yusufoglu, A. Bekir and M. Alp, Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using sine-cosine method, Chaos, Solitons and Fractals, 37 (2008), 1193-1197.
doi: 10.1016/j.chaos.2006.10.012.
|