A dynamical reconstruction problem for a system described by a coupled ordinary differential equation—heat equation is considered. The problem consists in reconstructing an unknown varying in time right-hand part of this system on the basis of inaccurate measurements of its solution. A dynamical algorithm for solving this problem is designed. An estimate for convergence rate is presented. The algorithm is stable with respect to informational noises and computational errors. It is based on the combination of the feedback control method and the method of smoothing functional well-known in the theory of ill-posed problems. The algorithm suggested in the paper is applied to solve tracking control problems. Results of a numerical experiment are discussed.
| Citation: |
| [1] |
K. Abbaoui and Y. Cherruault, New ideas for solving identification and optimal control problems related to biomedical systems, Int. J. Biomed. Comput., 36 (1994), 181-186.
doi: 10.1016/0020-7101(94)90052-3.
|
| [2] |
H. T. Banks and K. Kunisch, Estimation Techniques for Distributed Parameter Systems, Birkhäuser, Boston, 1989.
doi: 10.1007/978-1-4612-3700-6.
|
| [3] |
D. M. Bošković, M. Krstić and W. Liu, Boundary control of an unstable heat equation via measurement of domain-averaged temperature, IEEE Trans. Automat. Control, 46 (2001), 2022-2028.
doi: 10.1109/9.975513.
|
| [4] |
E. Casas and K. Chrysafinos, Analysis of the velocity tracking control problem for the 3D evolutionary Navier–Stokes equations, SIAM Journal of Control and Optimization, 54 (2016), 99-128.
doi: 10.1137/140978107.
|
| [5] |
E. Casas and K. Chrysafinos, Error estimates for the approximation of the velocity tracking problem with bang-bang control, ESAIM Control, Optim. and Calculus of Variations, 23 (2017), 1267-1291.
doi: 10.1051/cocv/2016054.
|
| [6] |
E. Casas and K. Kunisch, Using sparce control methods to identifity sources in linear diffusion-convention equations, Inverse Problems, 35 (2019), 114002.
doi: 10.1088/1361-6420/ab331c.
|
| [7] |
J. Daafouz, M. Tucsnak and J. Valein, Nonlinear control of a coupled PDE/ODE system modeling a switched power converter with a transmission line, Systems and Control Letters, 70 (2014), 92-99.
doi: 10.1016/j.sysconle.2014.05.009.
|
| [8] |
M. Fabrizio, A. Favini and G. Marinoschi, An optimal control problem for a singular system of solid-liquid phase transition, Numer. Funct. Anal. Optim., 31 (2010), 989-1022.
doi: 10.1080/01630563.2010.512691.
|
| [9] |
A. Favini and G. Marinoschi, Identification of the derivative coefficients in a fast diffusion degenerate equation, J. Optim. Theory Appl., 145 (2010), 249-269.
doi: 10.1007/s10957-009-9635-z.
|
| [10] |
A. Favini, V. Maksimov and L. Pandolfi, A deconvolution problem related to a singular system, J. Math. Anal. Appl., 292 (2004), 60-72.
doi: 10.1016/j.jmaa.2003.11.058.
|
| [11] |
G. Fragnelli, G. Marinoschi, R. M. Mininni and S. Romanelli, A control approach for an identification problem associated to a strongly degenerate parabolic system with interior degeneracy, New Prospects in Direct, Inverse and Control Problems for Evolution Equations. Springer INdAM Series, 10 (2014), 121-139.
doi: 10.1007/978-3-319-11406-4_7.
|
| [12] |
B.-Z. Guo, J. J. Liu, A. S. Al-Fhaid, A. M. M. Younas and A. Asiri, The active disturbance rejection control approach to stabilization of coupled heat and ODE system subject to boundary control matched disturbance, Int. J. Control, 88 (2015), 1554-1564.
doi: 10.1080/00207179.2015.1010179.
|
| [13] |
B.-Z. Guo and T.-T. Meng, Robust tracking error feedback control for output regulation of Euler–Bernoulli beam equation, Mathematics of Control, Signals, and Systems, 33 (2021), 707-754.
doi: 10.1007/s00498-021-00298-8.
|
| [14] |
K. Ito, K. Ramdani and M. Tucsnak, A time reversal based algorithm for solving initial data inverse problems, Discrete and Continuous Dynamical Systems – Series S, 4 (2011), 641-652.
doi: 10.3934/dcdss.2011.4.641.
|
| [15] |
S. I. Kabanikhin, Inverse and Ill-Posed Problems, De Gruyter, Berlin, 2012.
|
| [16] |
S. Kindermann and A. Leitao, On regularization methods for inverse problems of dynamic type, Numer. Funct. Anal. Optim., 27 (2006), 139-160.
doi: 10.1080/01630560600569973.
|
| [17] |
S. Kindermann and A. Leitao, On regularization methods based on dynamic programming techniques, Appl. Anal., 86 (2007), 611-632.
doi: 10.1080/00036810701354953.
|
| [18] |
N. N. Krasovskii and A. I. Subbotin, Game-Theoretical Control Problems, New York–Berlin: Springer Verlag, 1988.
|
| [19] |
M. Krstic and A. Smyshlyaev, Boundary Control of PDEs, SIAM, Philadelphia, 2008.
doi: 10.1137/1.9780898718607.
|
| [20] |
K. Kunisch and S. Rodrigues, Oblique projection based stabilizing feedback for nonautonomous coupled parabolic-ODE systems, AIMS Discrete and Continuous Dynamical Systems, Ser. A, 39 (2019), 6355-6389.
doi: 10.3934/dcds.2019276.
|
| [21] |
I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. Part Ⅰ: Abstract Parabolic Systems, Cambridge University Press, 2000.
|
| [22] |
M. M. Lavrentiev, V. G. Romanov and S. P. Shishatskii, Ill-posed Problems of Mathematical Physics and Analysis, Nauka, Novosibirsk, 1980 (in Russian).
|
| [23] |
V. I. Maksimov, Dynamical Inverse Problems of Distributed Systems, VSP, The Netherlands, 2002.
doi: 10.1515/9783110944839.
|
| [24] |
V. I. Maksimov, Some problems of guaranteed control of the Schlögl and Fitzhugh–Nagumo systems, Evolution Equations and Control Theory, 6 (2017), 559-586.
doi: 10.3934/eect.2017028.
|
| [25] |
V. I. Maksimov, The method of extremal shift in control problems for evolution variational inequalities under uncertaintly, Evolution Equations and Control Theory, 11 (2022), 1373-1398.
doi: 10.3934/eect.2021048.
|
| [26] |
V. I. Maksimov, On reconstruction of boundary controls in a parabolic equations, Adv. Diff. Equ., 14 (2009), 1193-1211.
|
| [27] |
V. Maksimov and L. Pandolfi, The problem of dynamical reconstruction of Dirichlet boundary control in semilinear hyperbolic equations, J. Inverse Ill-Posed Problems, 8 (2000), 399-420.
doi: 10.1515/jiip.2000.8.4.399.
|
| [28] |
V. Maksimov and L. Pandolfi, Dynamical reconstruction of inputs for contraction semigroup systems: boundary input case, J. Optim. Theory and Appl., 103 (1999), 401-420.
doi: 10.1023/A:1021709004193.
|
| [29] |
V. I. Maksimov and F. Tröltzsch, Dynamical state end control reconstruction for aphase field model, Dynamics of Continuous, Discrete and Impulsive Systems. A: Mathematical Analysis, 13 (2006), 419-444.
|
| [30] |
V. I. Maksimov and F. Tröltzsch, Input reconstruction by feedback control for the Schlögl and Fitzhugh–Nagumo equations, Int. J. Appl. Math. Comput. Sci., 30 (2020), 5-22.
doi: 10.34768/amcs-2020-0001.
|
| [31] |
Yu. S. Osipov and A. V. Kryazhimskii, Inverse Problems for Ordinary Differential Equations: Dynamical Solutions., Gordon and Breach, London, 1995.
|
| [32] |
L. Pandolfi, Adaptive recursive deconvolution and adaptive noise cancellation, Int. J. Control, 80 (2007), 403-415.
doi: 10.1080/00207170601042346.
|
| [33] |
A. Pisano, Y. V. Orlov and E. Usai, Tracking control of the uncertain heat and wave equation via power-fractional and sliding-mode techniques, SIAM J. Control Optimiz., 49 (2011), 363-382.
doi: 10.1137/090781140.
|
| [34] |
K. Ramdani, M. Tucsnak and G. Weiss, Recovering the initial state of an infinite-dimensional system using observers, Automatica, 46 (2010), 1616-1625.
doi: 10.1016/j.automatica.2010.06.032.
|
| [35] |
R. Rebarber and G. Weiss, Internal model based tracking and disturbance rejection for stable welll-posed systems, Automatica, 39 (2003), 1555-1569.
doi: 10.1016/S0005-1098(03)00192-4.
|
| [36] |
U. Schmitt and A. K. Louis, Efficient algorithms for the regularization of dynamic inverse problems: Ⅰ. Theory, Inverse problems, 18 (2002), 645-658.
doi: 10.1088/0266-5611/18/3/308.
|
| [37] |
U. Schmitt, A. K. Louis, C. Wolters and M. Vauhkonen, Efficient algorithms for the regularization of dynamic inverse problems: Ⅱ. Applications, Inverse problems, 18 (2002), 659-676.
doi: 10.1088/0266-5611/18/3/309.
|
| [38] |
L. Shitao and R. Triggiani, Recovering damping and potential coefficients for an inverse non-homogeneous second-order hyperbolic problem via a localized Neumann boundary trace, Discrete and Continuous Dynamical Systems, 33 (2013), 5217-5252.
doi: 10.3934/dcds.2013.33.5217.
|
| [39] |
S. Tang and C. Xie, Stabilization for coupled PDI-ODE control system, J. Francklin Institute, 348 (2011), 2142-2155.
doi: 10.1016/j.jfranklin.2011.06.008.
|
| [40] |
F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, AMS, Providence, Rhode Island, 2010.
doi: 10.1090/gsm/112.
|
| [41] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Basel, 2009.
doi: 10.1007/978-3-7643-8994-9.
|
Scheme of control reconstruction method
h = 0.001
h = 0.01
h = 0.001
h = 0.01
h = 0.001
h = 0.01