In this paper we prove that the solutions of an implicit scheme converge to equilibrium points under certain conditions on the potential function $ F $ and the forcing term $ g $. For this purpose, we use a Lojasiewicz inequality and introduce a discretized energy and a Lyapunov function. In addition, we provide some numerical simulations that support our findings.
Citation: |
[1] | P.-A. Absil, R. Mahony and B. Andrews, Convergence of the iterates of descent methods for analytic cost functions, SIAM J. Optim., 16 (2005), 531-547. doi: 10.1137/040605266. |
[2] | N. E. Alaa and M. Pierre, Convergence to equilibrium for discretized gradient-like systems with analytic features, IMA J. Numer. Anal., 33 (2013), 1291-1321. doi: 10.1093/imanum/drs042. |
[3] | H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features, Math. Program., 116 (2009), 5-16. doi: 10.1007/s10107-007-0133-5. |
[4] | I. Ben Hassen and L. Chergui, Convergence of global and bounded solutions of some nonautonomous second order evolution equations with nonlinear dissipation, J. Dyn. Differential Equations, 23 (2011), 315-332. doi: 10.1007/s10884-011-9212-7. |
[5] | L. Chergui, Convergence of global and bounded solutions of a second order gradient like system with nonlinear dissipation and analytic nonlinearity, J. Dyn. Differential Equations, 20 (2008), 643-652. doi: 10.1007/s10884-007-9099-5. |
[6] | R. Chill, A. Haraux and M. A. Jendoubi, Applications of the Łojasiewicz-Simon, gradient inequality to gradient-like evolution equations, Anal. Appl. Singap., 7 (2009), 351-372. doi: 10.1142/S0219530509001438. |
[7] | D. D'Acunto and K. Kurdyka, Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials, Ann. Pol. Math., 87 (2005), 51-61. doi: 10.4064/ap87-0-5. |
[8] | M. Grasselli and M. Pierre, Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems, Commun. Pure Appl. Anal., 11 (2012), 2393-2416. doi: 10.3934/cpaa.2012.11.2393. |
[9] | A. Haraux and M. A. Jendoubi, The Convergence Problem for Dissipative Autonomous Systems. Classical Methods and Recent Advances, SpringerBriefs in Mathematics, Springer, Bcam, 2015. doi: 10.1007/978-3-319-23407-6. |
[10] | A. Haraux and M. A. Jendoubi, Convergence of solutions of second-order gradient-like systems with analytic nonlinearities, J. Differential Equations, 144 (1998), 313-320. doi: 10.1006/jdeq.1997.3393. |
[11] | A. Haraux and M. A. Jendoubi, Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity, Asymptotic Anal., 26 (2001), 21-36. |
[12] | A. Haraux and M. A. Jendoubi, Asymptotics for a second order differential equation with a linear, slowly time-decaying damping term, Evolution Equations and Control Theory, 2 (2013), 461-470. doi: 10.3934/eect.2013.2.461. |
[13] | A. Haraux and M. A. Jendoubi, Asymptotics for some discretizations of dynamical systems, application to second order systems with non-local nonlinearities, Commun. Pure Appl. Anal., 21 (2022), 999-1025. doi: 10.3934/cpaa.2022007. |
[14] | T. Horsin and M. A. Jendoubi, Non-genericity of initial data with punctual $\omega$-limit set, Arch. Math., 114 (2020), 185-193. doi: 10.1007/s00013-019-01377-8. |
[15] | M. A. Jendoubi and P. Polacik, Non-stabilizing solutions of semilinear hyperbolic and elliptic equations with damping, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 1137-1153. doi: 10.1017/S0308210500002845. |
[16] | S. Lojasiewicz, Une Propriété Topologique Des Sous Ensembles Analytiques Réels, Éditions du Centre National de la Recherche Scientifique (CNRS), Paris, 1963. |
[17] | ______, Ensembles Semi-Analytiques, I.H.E.S. notes, 1965. |
[18] | B. Merlet and M. Pierre, Convergence to equilibrium for the backward Euler scheme and applications, Commun. Pure Appl. Anal., 9 (2010), 685-702. doi: 10.3934/cpaa.2010.9.685. |
[19] | J. Palis and W. de Melo, Geometric Theory of Dynamical Systems: An Introduction, Springer-Verlag, New-York, 1982. |
Graph of
Visualization of the convergence of
Graph of
Graph of
Visualization of the convergence of
Graph of
Graph of
Visualization of the convergence of
Graph of
Graph of
Visualization of the convergence of
Graph of