\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global boundary stabilization to trajectories of the deterministic and stochastic porous-media equation

The author is supported by CNRS International Research Network ECO-Math.

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • Here we deal with the problem of boundary asymptotic exponential stabilization of flows through porous media. More exactly we study the porous media equation with general monotone porosity in a bounded domain of dimension $ d = 1,2,3 $. We construct an explicit, linear, of finite-dimensional structure feedback controller with Dirichlet part-boundary actuation, which stabilizes any trajectory of the system, for any given initial data. The form of the controller is based on the spectrum of the Dirichlet-Laplace operator and ensures exponential decay to zero of the fluctuation variable for any a priori prescribed decay rate. Also, we extend these results to the case of porous media equation perturbed by Itô Lipschitz noise.

    Mathematics Subject Classification: Primary: 76S05, 93B52; Secondary: 47A10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] V. BarbuG. Da Prato and M. Röckner, Existence of strong solutions for stochastic porous media equation under general monotonicity conditions, Ann. Probab., 37 (2009), 428-452.  doi: 10.1214/08-AOP408.
    [2] I. Ciotir, D. Goreac and I. Munteanu, State-constrained porous media control systems with application to stabilization, J. Evol. Eqs., 23 (2023), Paper No. 25, 34 pp. doi: 10.1007/s00028-023-00874-2.
    [3] I. CiotirD. Goreac and I. Munteanu, On state-constrained porous-media systems with gradient-type multiplicative noise, Asian J. Control, 25 (2023), 2604-2616.  doi: 10.1002/asjc.3013.
    [4] B. CockburnD. A. Jones and E. S. Titi, Degrés de liberté déterminants pour equations non linéaires dissipatives, C.R. Acad. Sci.-Paris I Math., 321 (1995), 563-568. 
    [5] B. CockburnD. A. Jones and E. S. Titi, Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems, Math. Comput., 97 (1997), 1073-1087.  doi: 10.1090/S0025-5718-97-00850-8.
    [6] G. Da PratoB. RozovskiiM. Röckner and F.-Y. Wang, Strong solutions of stochastic generalized porous media equations: Existence, Commun. Partial Differ. Equ., 31 (2006), 277-291.  doi: 10.1080/03605300500357998.
    [7] C. FoiasO. P. ManleyR. Rosa and  R. TemamNavier-Stokes Equations and Turbulence, Encyclopedia Math. Appl., 83. Cambridge University Press, 2001.  doi: 10.1017/CBO9780511546754.
    [8] C. Foias and G. Prodi, Sur le comportement global des solutions non stationnaires des equations de Navier-Stokes en dimension deux, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1-34. 
    [9] C. Foias and R. Temam, Determination of the solutions of the Navier-Stokes equations by a set of nodal values, Math. Comput., 43 (1984), 117-133.  doi: 10.1090/S0025-5718-1984-0744927-9.
    [10] B. H. Gilding, Stabilization of flows through porous media, SIAM J. Math. Anal., 10 (1979), 237-246.  doi: 10.1137/0510022.
    [11] A. Hasan, B. Foss and S. Sagatun, Boundary control of fluid flow through porous media, AIP Conference Proceedings 2010, (2010).
    [12] A. HasanB. Foss and S. Sagatun, Flow control of fluids through porous media, Appl. Math. Comput., 219 (2012), 3323-3335.  doi: 10.1016/j.amc.2011.07.001.
    [13] A. Ichikawa, Dynamic programming approach to stochastic evolution equations, SIAM J. Control Optim., 17 (1979), 152-174.  doi: 10.1137/0317012.
    [14] M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course on Backstepping Designs, Adv. Des. Control, 16. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008. doi: 10.1137/1.9780898718607.
    [15] M. Krstic, On global stabilization of Burgers' equation by boundary control, Syst. Control Lett., 37 (1999), 123-142.  doi: 10.1016/S0167-6911(99)00013-4.
    [16] O. A. Ladyzhenskaya, A dynamical system generated by the Navier-Stokes equations, Zap. Nauch. Sem. LOMI, 27 (1972), 91-114. 
    [17] I. LasieckaB. Priyasad and R. Triggiani, Uniform stabilization of Boussinesq systems in critical Lq-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls, Discrete Contin. Dyn. Syst.- Serie B, 25 (2020), 4071-4117.  doi: 10.3934/dcdsb.2020187.
    [18] I. Lasiecka and R. Triggiani, Differential and Algebraic Riccati Equations with Application to Boundary/point Control Problems: Continuous Theory and Approximation Theory, Lect. Notes Control Inf. Sci., 164. Springer-Verlag, Berlin, 1991. doi: 10.1007/BFb0006880.
    [19] I. Munteanu, Boundary Stabilization of Parabolic Equations, Progr. Nonlinear Differential Equations Appl., 93. Subser. Control Birkhäuser/Springer, Cham, 2019. doi: 10.1007/978-3-030-11099-4.
    [20] D. Phan and S. S. Rodrigues, Stabilization to trajectories for parabolic equations, Math. Control, Signals Syst., 30 (2018), Art. 11, 50 pp. doi: 10.1007/s00498-018-0218-0.
    [21] C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Math., 1905. Springer, Berlin, 2007.
    [22] M. RamaswamyJ. P. Raymond and A. Roy, Boundary feedback stabilization of the Boussinesq system with mixed boundary conditions, J. Diff. Equ., 266 (2019), 4268-4304.  doi: 10.1016/j.jde.2018.09.038.
    [23] M. Shinbrot, Lectures on Fluid Mechanics, Gordon and Breach 1973.
    [24] J. L. VazquezThe Porous Medium Equation: Mathematical Theory, Oxford University Press, USA, 2007. 
    [25] J. B. Walsh, An introduction to stochastic partial differential equations, Lecture notes in Mathematics, Lecture Notes in Math., Springer- Berlin, 1180 (1986), 265-439.  doi: 10.1007/BFb0074920.
    [26] F. Zhang, Matrix Theory, Basic Results and Techniques, Springer Second Edition, 2011. doi: 10.1007/978-1-4614-1099-7.
  • 加载中
SHARE

Article Metrics

HTML views(1822) PDF downloads(317) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return