Here we deal with the problem of boundary asymptotic exponential stabilization of flows through porous media. More exactly we study the porous media equation with general monotone porosity in a bounded domain of dimension $ d = 1,2,3 $. We construct an explicit, linear, of finite-dimensional structure feedback controller with Dirichlet part-boundary actuation, which stabilizes any trajectory of the system, for any given initial data. The form of the controller is based on the spectrum of the Dirichlet-Laplace operator and ensures exponential decay to zero of the fluctuation variable for any a priori prescribed decay rate. Also, we extend these results to the case of porous media equation perturbed by Itô Lipschitz noise.
Citation: |
[1] |
V. Barbu, G. Da Prato and M. Röckner, Existence of strong solutions for stochastic porous media equation under general monotonicity conditions, Ann. Probab., 37 (2009), 428-452.
doi: 10.1214/08-AOP408.![]() ![]() ![]() |
[2] |
I. Ciotir, D. Goreac and I. Munteanu, State-constrained porous media control systems with application to stabilization, J. Evol. Eqs., 23 (2023), Paper No. 25, 34 pp.
doi: 10.1007/s00028-023-00874-2.![]() ![]() ![]() |
[3] |
I. Ciotir, D. Goreac and I. Munteanu, On state-constrained porous-media systems with gradient-type multiplicative noise, Asian J. Control, 25 (2023), 2604-2616.
doi: 10.1002/asjc.3013.![]() ![]() ![]() |
[4] |
B. Cockburn, D. A. Jones and E. S. Titi, Degrés de liberté déterminants pour equations non linéaires dissipatives, C.R. Acad. Sci.-Paris I Math., 321 (1995), 563-568.
![]() ![]() |
[5] |
B. Cockburn, D. A. Jones and E. S. Titi, Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems, Math. Comput., 97 (1997), 1073-1087.
doi: 10.1090/S0025-5718-97-00850-8.![]() ![]() ![]() |
[6] |
G. Da Prato, B. Rozovskii, M. Röckner and F.-Y. Wang, Strong solutions of stochastic generalized porous media equations: Existence, Commun. Partial Differ. Equ., 31 (2006), 277-291.
doi: 10.1080/03605300500357998.![]() ![]() ![]() |
[7] |
C. Foias, O. P. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Encyclopedia Math. Appl., 83. Cambridge University Press, 2001.
doi: 10.1017/CBO9780511546754.![]() ![]() ![]() |
[8] |
C. Foias and G. Prodi, Sur le comportement global des solutions non stationnaires des equations de Navier-Stokes en dimension deux, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1-34.
![]() ![]() |
[9] |
C. Foias and R. Temam, Determination of the solutions of the Navier-Stokes equations by a set of nodal values, Math. Comput., 43 (1984), 117-133.
doi: 10.1090/S0025-5718-1984-0744927-9.![]() ![]() ![]() |
[10] |
B. H. Gilding, Stabilization of flows through porous media, SIAM J. Math. Anal., 10 (1979), 237-246.
doi: 10.1137/0510022.![]() ![]() ![]() |
[11] |
A. Hasan, B. Foss and S. Sagatun, Boundary control of fluid flow through porous media, AIP Conference Proceedings 2010, (2010).
![]() |
[12] |
A. Hasan, B. Foss and S. Sagatun, Flow control of fluids through porous media, Appl. Math. Comput., 219 (2012), 3323-3335.
doi: 10.1016/j.amc.2011.07.001.![]() ![]() ![]() |
[13] |
A. Ichikawa, Dynamic programming approach to stochastic evolution equations, SIAM J. Control Optim., 17 (1979), 152-174.
doi: 10.1137/0317012.![]() ![]() ![]() |
[14] |
M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course on Backstepping Designs, Adv. Des. Control, 16. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008.
doi: 10.1137/1.9780898718607.![]() ![]() ![]() |
[15] |
M. Krstic, On global stabilization of Burgers' equation by boundary control, Syst. Control Lett., 37 (1999), 123-142.
doi: 10.1016/S0167-6911(99)00013-4.![]() ![]() ![]() |
[16] |
O. A. Ladyzhenskaya, A dynamical system generated by the Navier-Stokes equations, Zap. Nauch. Sem. LOMI, 27 (1972), 91-114.
![]() |
[17] |
I. Lasiecka, B. Priyasad and R. Triggiani, Uniform stabilization of Boussinesq systems in critical Lq-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls, Discrete Contin. Dyn. Syst.- Serie B, 25 (2020), 4071-4117.
doi: 10.3934/dcdsb.2020187.![]() ![]() ![]() |
[18] |
I. Lasiecka and R. Triggiani, Differential and Algebraic Riccati Equations with Application to Boundary/point Control Problems: Continuous Theory and Approximation Theory, Lect. Notes Control Inf. Sci., 164. Springer-Verlag, Berlin, 1991.
doi: 10.1007/BFb0006880.![]() ![]() ![]() |
[19] |
I. Munteanu, Boundary Stabilization of Parabolic Equations, Progr. Nonlinear Differential Equations Appl., 93. Subser. Control Birkhäuser/Springer, Cham, 2019.
doi: 10.1007/978-3-030-11099-4.![]() ![]() ![]() |
[20] |
D. Phan and S. S. Rodrigues, Stabilization to trajectories for parabolic equations, Math. Control, Signals Syst., 30 (2018), Art. 11, 50 pp.
doi: 10.1007/s00498-018-0218-0.![]() ![]() ![]() |
[21] |
C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Math., 1905. Springer, Berlin, 2007.
![]() ![]() |
[22] |
M. Ramaswamy, J. P. Raymond and A. Roy, Boundary feedback stabilization of the Boussinesq system with mixed boundary conditions, J. Diff. Equ., 266 (2019), 4268-4304.
doi: 10.1016/j.jde.2018.09.038.![]() ![]() ![]() |
[23] |
M. Shinbrot, Lectures on Fluid Mechanics, Gordon and Breach 1973.
![]() |
[24] |
J. L. Vazquez, The Porous Medium Equation: Mathematical Theory, Oxford University Press, USA, 2007.
![]() ![]() |
[25] |
J. B. Walsh, An introduction to stochastic partial differential equations, Lecture notes in Mathematics, Lecture Notes in Math., Springer- Berlin, 1180 (1986), 265-439.
doi: 10.1007/BFb0074920.![]() ![]() ![]() |
[26] |
F. Zhang, Matrix Theory, Basic Results and Techniques, Springer Second Edition, 2011.
doi: 10.1007/978-1-4614-1099-7.![]() ![]() ![]() |