In this paper, we study the indirect stabilization problem for a system of two coupled semilinear wave equations with internal damping in a bounded domain in $ \mathbb{R} ^3 $. The nonlinearity is assumed to be subcritical, defocusing and analytic. Under geometric control condition on both coupling and damping regions, we establish the exponential energy decay rate.
| Citation: |
| [1] |
F. Alabau-Boussouira, A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems, SIAM J. Control Optim., 42 (2003), 871-906.
doi: 10.1137/S0363012902402608.
|
| [2] |
F. Alabau-Boussouira, On some recent advances on stabilization for hyperbolic equations, in Control of Partial Differential Equations, volume 2048 of Lecture Notes in Math., Springer, Heidelberg, 2012, 1-100.
doi: 10.1007/978-3-642-27893-8_1.
|
| [3] |
F. Alabau-Boussouira, On the influence of the coupling on the dynamics of single-observed cascade systems of PDE's, Math. Control Relat. Fields, 5 (2015), 1-30.
doi: 10.3934/mcrf.2015.5.1.
|
| [4] |
F. Alabau-Boussouira and M. Léautaud, Indirect stabilization of locally coupled wave-type systems, ESAIM: Control, Optimisation and Calculus of Variations, 18 (2012), 548-582.
doi: 10.1051/cocv/2011106.
|
| [5] |
F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled wave-type systems and applications, J. Math. Pures Appl. (9), 99 (2013), 544-576.
doi: 10.1016/j.matpur.2012.09.012.
|
| [6] |
L. Aloui, S. Ibrahim and M. Khenissi, Energy decay for linear dissipative wave equations in exterior domains, Journal of Differential Equations, 259 (2015), 2061-2079.
doi: 10.1016/j.jde.2015.03.018.
|
| [7] |
L. Aloui, S. Ibrahim and K. Nakanishi, Exponential energy decay for damped Klein-Gordon equation with nonlinearities of arbitrary growth, Communications in Partial Differential Equations, 36 (2011), 797-818.
doi: 10.1080/03605302.2010.534684.
|
| [8] |
N. Anantharaman and M. Léautaud, Sharp polynomial decay rates for the damped wave equation on the torus, Analysis & PDE, 7 (2014), 159-214.
doi: 10.2140/apde.2014.7.159.
|
| [9] |
R. Ayechi and M. Khenissi, Local indirect stabilization of same coupled evolution systems through resolvent estimates, Discrete and Continuous Dynamical Systems-S, 15 (2022), 1573-1597.
doi: 10.3934/dcdss.2022099.
|
| [10] |
C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM Journal on Control and Optimization, 30 (1992), 1024-1065.
doi: 10.1137/0330055.
|
| [11] |
M. D. Blair, H. F. Smith and C. D. Sogge, Strichartz estimates for the wave equation on manifolds with boundary, Annales de L'Institut Henri Poincaré C, Analyse non Linéaire, 26 (2009), 1817-1829.
doi: 10.1016/j.anihpc.2008.12.004.
|
| [12] |
J.-M. Bouclet and J. Royer, Local energy decay for the damped wave equation, Journal of Functional Analysis, 266 (2014), 4538-4615.
doi: 10.1016/j.jfa.2014.01.028.
|
| [13] |
N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Mathematical Research Letters, 14 (2007), 35-47.
doi: 10.4310/MRL.2007.v14.n1.a3.
|
| [14] |
N. Burq, G. Lebeau and F. Planchon, Global existence for energy critical waves in 3-D domains, Journal of the American Mathematical Society, 21 (2008), 831-845.
doi: 10.1090/S0894-0347-08-00596-1.
|
| [15] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti, R. Fukuoka, A. B. Pampu and M. Astudillo, Uniform decay rate estimates for the semilinear wave equation in inhomogeneous medium with locally distributed nonlinear damping, Nonlinearity, 31 (2018), 4031-4064.
doi: 10.1088/1361-6544/aac75d.
|
| [16] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti, R. Fukuoka and J. Soriano, Uniform stabilization of the wave equation on compact surfaces and locally distributed damping, Methods and Applications of Analysis, 15 (2008), 405-425.
doi: 10.4310/MAA.2008.v15.n4.a1.
|
| [17] |
Y. Cui, C. Laurent and Z. Wang, On the observability inequality of coupled wave equations: The case without boundary, ESAIM: Control, Optimisation and Calculus of Variations, 26 (2020), no. 14.
doi: 10.1051/cocv/2020004.
|
| [18] |
Y. Cui and Z. Wang, On the asymptotic stability of wave equations coupled by velocities of anti-symmetric type, Chinese Ann. Math. Ser. B, 42 (2021), 813-832.
doi: 10.1007/s11401-021-0293-8.
|
| [19] |
B. Dehman, Stabilisation pour l'équation des ondes semi-linéaire, Asymptotic Analysis, 27 (2001), 171-181.
|
| [20] |
B. Dehman and P. Gérard, Stabilization for the nonlinear Klein Gordon equation with critical exponent, Université de Paris-Sud. Département de Mathématique, 2002.
|
| [21] |
B. Dehman, P. Gérard and G. Lebeau, Stabilization and control for the nonlinear Schrödinger equation on a compact surface, Mathematische Zeitschrift, 254 (2006), 729-749.
doi: 10.1007/s00209-006-0005-3.
|
| [22] |
B. Dehman, J. Le Rousseau and M. Léautaud, Controllability of two coupled wave equations on a compact manifold, Arch. Ration. Mech. Anal., 211 (2014), 113-187.
doi: 10.1007/s00205-013-0670-4.
|
| [23] |
B. Dehman, G. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation, Ann. Sci. École Norm. Sup. (4), 36 (2003), 525-551.
doi: 10.1016/S0012-9593(03)00021-1.
|
| [24] |
J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation, Mathematische Zeitschrift, 189 (1985), 487-505.
doi: 10.1007/BF01168155.
|
| [25] |
J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation II, Annales Inst. H. Poincaré Anal. non Linéaire, 6 (1989), 15-35.
doi: 10.1016/s0294-1449(16)30329-8.
|
| [26] |
P. Grisvard, Caractérisation de quelques espaces d'interpolation, Arch. Rational Mech. Anal., 25 (1967), 40-63.
doi: 10.1007/BF00281421.
|
| [27] |
A. Haraux, Stabilization of trajectories for some weakly damped hyperbolic equations, Journal of Differential Equations, 59 (1985), 145-154.
doi: 10.1016/0022-0396(85)90151-2.
|
| [28] |
R. Joly and C. Laurent, Stabilization for the semilinear wave equation with geometric control condition, Analysis & PDE, 6 (2013), 1089-1119.
doi: 10.2140/apde.2013.6.1089.
|
| [29] |
R. Joly and C. Laurent, Decay of semilinear damped wave equations: Cases without geometric control condition, Ann. H. Lebesgue, 3 (2020), 1241-1289.
doi: 10.5802/ahl.60.
|
| [30] |
R. Joly and J. Royer, Energy decay and diffusion phenomenon for the asymptotically periodic damped wave equation, Journal of the Mathematical Society of Japan, 70 (2018), 1375-1418.
doi: 10.2969/jmsj/77667766.
|
| [31] |
M. Khenissi, Équation des ondes amorties dans un domaine extérieur, Bulletin de la Société Mathématique de France, 131 (2003), 211-228.
doi: 10.24033/bsmf.2440.
|
| [32] |
G. Klein, Best exponential decay rate of energy for the vectorial damped wave equation, SIAM J. Control Optim., 56 (2018), 3432-3453.
doi: 10.1137/17M1142636.
|
| [33] |
C. Laurent, On stabilization and control for the critical Klein-Gordon equation on a 3-D compact manifold, Journal of Functional Analysis, 260 (2011), 1304-1368.
doi: 10.1016/j.jfa.2010.10.019.
|
| [34] |
G. Lebeau, Équation des ondes amorties, in Algebraic and Geometric Methods in Mathematical Physics, Springer, 1996, 73-109.
|
| [35] |
R. B. Melrose and J. Sjöstrand, Singularities of boundary value problems. I, Comm. Pure Appl. Math., 31 (1978), 593-617.
doi: 10.1002/cpa.3160310504.
|
| [36] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, NY, USA, 1983.
doi: 10.1007/978-1-4612-5561-1.
|
| [37] |
R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Mathematical Journal, 44 (1977), 705-714.
doi: 10.1215/S0012-7094-77-04430-1.
|
| [38] |
E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping, Communications in Partial Differential Equations, 15 (1990), 205-235.
doi: 10.1080/03605309908820684.
|
| [39] |
E. Zuazua, Exponential decay for the semilinear wave equation with localized damping in unbounded domains, Journal de Mathématiques Pures et Appliquées, 70 (1991), 513-529.
|