\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Strong and exponential stabilization of linear boundary control systems

  • *Corresponding author: Abdellah Lourini

    *Corresponding author: Abdellah Lourini 
Abstract / Introduction Full Text(HTML) Figure(4) Related Papers Cited by
  • In this work, we focus on the problem of stabilizing boundary control systems. Studying such boundary control systems is widely recognized as a complex issue. To tackle this issue, we employ a strategy that involves transforming the stabilization problem into a corresponding linear internal control system. By utilizing this transformation, we simplify the analysis of boundary stabilization problems and make the most of the extensive body of existing literature. To achieve exponential stability, we utilize spectral decomposition. Additionally, we explore the strong stabilization of a broad class of Riesz-spectral boundary control problems. We apply our findings to a class of heat equations and provide numerical simulations to illustrate these results.

    Mathematics Subject Classification: Primary: 93A10, 93D15; Secondary: 47D06, 34K30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Evolution of $ \|x(t)\| $, norm of solution of closed-loop system (21)-(22) with $ x_0(z) = \frac{3\pi^2}{4}\cos(\pi z) $

    Figure 2.  Evolution of state $ x(z, t) $ of closed-loop system (21)-(22) with $ x_0(z) = \frac{3\pi^2}{4}\cos(\pi z) $

    Figure 3.  Evolution of $ \|x(t)\| $ norm of solution of closed-loop system (21)-(25) with $ x_0(z) = \frac{3\pi^2}{4}\cos(\pi z) $

    Figure 4.  Evolution of state $ x(z, t) $ for $ x_0(z) = \frac{-\pi^2}{4}(z-z^2)^2+4(z-z^2)-\frac{\pi^2}{4}-2 $

  • [1] W. Arendt, Semigroups and evolution equations: Functional calculus, regularity and kernel estimates, In Handbook of Differential Equations: Evolutionary Equations, 1 (2002), 1-85.
    [2] A. Bensoussan, G. Da Prato, M. C. Delfour, and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, volume 1. 2$^{nd}$ edition, Systems Control Found. Appl. Birkhäuser Boston, Inc., Boston, MA, 2007. doi: 10.1007/978-0-8176-4581-6.
    [3] L. Berrahmoune, A note on admissibility for unbounded bilinear control systems, Bulletin of the Belgian Mathematical Society-Simon Stevin, 16 (2009), 193-204. 
    [4] D. M. BoškovićM. Krstic and W. Liu, Boundary control of an unstable heat equation via measurement of domain-averaged temperature, IEEE Transactions on Automatic Control, 46 (2001), 2022-2028.  doi: 10.1109/9.975513.
    [5] A. BoulouzH. Bounit and S. Hadd, Well-posedness and exponential stability of boundary control systems with dynamic boundary conditions, Systems and Control Letters, 147 (2021), 104825.  doi: 10.1016/j.sysconle.2020.104825.
    [6] H. Bounit and H. Hammouri, Bounded feedback stabilization and global separation principle of distributed parameter systems, IEEE Transactions on Automatic Control, 42 (1997), 414-419.  doi: 10.1109/9.557588.
    [7] A. Cheng and K. Morris, Well-posedness of boundary control systems, SIAM Journal on Control and Optimization, 42 (2003), 1244-1265.  doi: 10.1137/S0363012902384916.
    [8] R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, volume 21. Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6.
    [9] M. El AzzouziA. Lourini and M. Laabissi, Null controllability of networks systems, Journal of Dynamical and Control Systems, 29 (2023), 855-872.  doi: 10.1007/s10883-022-09623-z.
    [10] K.-J. EngelM. K. FijavžB. KlössR. Nagel and E. Sikolya, Maximal controllability for boundary control problems, Applied Mathematics Optimization, 62 (2010), 205-227.  doi: 10.1007/s00245-010-9101-1.
    [11] K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, In Semigroup Forum, (2001), 278-280.
    [12] H. O. Fattorini, Boundary control systems, SIAM Journal on Control, 6 (1968), 349-385. 
    [13] G. Greiner, Perturbing the boundary-conditions of a generator, Houston Journal of Mathematics, 13 (1987), 213-229. 
    [14] S. HaddR. Manzo and A. Rhandi, Unbounded perturbations of the generator domain, Discrete Continuous Dynamical Systems, 35 (2015), 703-723.  doi: 10.3934/dcds.2015.35.703.
    [15] A. Idrissi, On the unboundedness of control operators for bilinear systems, Quaestiones Mathematicae, 26 (2003), 105-123.  doi: 10.2989/16073600309486048.
    [16] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, volume 1. Cambridge University Press Cambridge, 2000.
    [17] H. Lhachemi and C. Prieur, Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control, IEEE Transactions on Automatic Control, 66 (2021), 105-120.  doi: 10.1109/tac.2020.2975003.
    [18] H. Lhachemi and R. Shorten, Boundary feedback stabilization of a reaction–diffusion equation with robin boundary conditions and state-delay, Automatica, 116 (2020), 108931.  doi: 10.1016/j.automatica.2020.108931.
    [19] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications: Vol. 1, volume 181. Springer-Verlag, New York-Heidelberg, 1972.
    [20] A. LouriniM. El Azzouzi and M. Laabissi, Exponential stabilization of riesz-spectral bilinear boundary control systems, Systems Control Letters, 181 (2023), 105649.  doi: 10.1016/j.sysconle.2023.105649.
    [21] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.
    [22] D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, Siam Review, 20 (1978), 639-739.  doi: 10.1137/1020095.
    [23] D. Salamon, Infinite-dimensional linear systems with unbounded control and observation: A functional analytic approach, Transactions of the American Mathematical Society, 300 (1987), 383-431.  doi: 10.2307/2000351.
    [24] M. Slemrod, Stabilization of boundary control systems, Journal of Differential Equations, 22 (1976), 402-415.  doi: 10.1016/0022-0396(76)90036-X.
    [25] M. Slemrod, Feedback stabilization of a linear control system in hilbert space with an a priori bounded control, Mathematics of Control, Signals and Systems, 2 (1989), 265-285.  doi: 10.1007/BF02551387.
    [26] O. Staffans, Well-Posed Linear Systems, volume 103. Cambridge University Press, Cambridge, 2005.
    [27] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.
    [28] G. Weiss, Admissibility of unbounded control operators, SIAM Journal on Control and Optimization, 27 (1989), 527-545.  doi: 10.1137/0327028.
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(1736) PDF downloads(439) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return