\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Local Halanay's inequality with application to feedback stabilization

  • *Corresponding author: Frederic Mazenc

    *Corresponding author: Frederic Mazenc 

The first author is supported by US National Science Foundation Grants 2009659 and 2308282.

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We provide a local version of an approach to proving asymptotic stability that is based on Halanay's inequality. Our results are applicable to a family of nonlinear systems that contain state and input delays. We determine input-to-state stability inequalities when the systems contain additive uncertainty. We combine the results with an observer and a Gramian approach, to solve an output feedback stabilization problem. Our numerical examples illustrate how our theorems lead to new basin of attraction estimates.

    Mathematics Subject Classification: Primary: 93C23, 93D05, 93D20, 93D25; Secondary: 39B72, 34D23, 34D05, 26A46, 26A48.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] E. Beretta and D. Breda, Discrete or distributed delay? Effects on stability of population growth, Mathematical Biosciences and Engineering, 13 (2016), 19-41.  doi: 10.3934/mbe.2016.13.19.
    [2] A. ChailletI. KarafyllisP. Pepe and Y. Wang, The ISS framework for time-delay systems: A survey, Mathematics of Control, Signals, and Systems, 35 (2023), 237-306.  doi: 10.1007/s00498-023-00341-w.
    [3] Y. ChenZ. WangB. Shen and Q.-L. Han, Local stabilization for multiple input-delay systems subject to saturating actuators: The continuous-time case, IEEE Transactions on Automatic Control, 67 (2022), 3090-3097.  doi: 10.1109/TAC.2021.3092556.
    [4] E. Fridman, Introduction to Time-Delay Systems, Birkhäuser, Cham, 2014. doi: 10.1007/978-3-319-09393-2.
    [5] M. Grifa and P. Pepe, On stability analysis of discrete-time systems with constrained time-delays via nonlinear Halanay-type inequality, IEEE Control Systems Letters, 5 (2021), 869-874. 
    [6] A. HalanayDifferential Equations: Stability, Oscillations, Time Lags, Academic Press, New York, NY, 1966. 
    [7] R. Katz and E. Fridman, Sampled-data finite-dimensional boundary control of 1D parabolic PDEs under point measurement via a novel ISS Halanay's inequality, Automatica, 135 (2022), 14 pp.
    [8] H. Khalil, Nonlinear Systems, 3$^{rd}$ edition, Prentice Hall, Upper Saddle River, NJ, 2002.
    [9] H. Lhachemi and R. Shorten, On the derivation of stability properties for time-delay systems without constraint on the time-derivative of the initial condition, IEEE Transactions on Automatic Control, 66 (2021), 5401-5406. 
    [10] Mathematica, The world's definitive system for modern technical computing, Wolfram Research, 2015, http://www.wolfram.com/mathematica/.
    [11] F. Mazenc and M. Malisoff, Almost finite-time observers for a family of nonlinear continuous-time systems, IEEE Control Systems Letters, 6 (2022), 2593-2598.  doi: 10.1109/LCSYS.2022.3172366.
    [12] F. MazencM. Malisoff and M. Krstic, Vector extensions of Halanay's inequality, IEEE Transactions on Automatic Control, 67 (2022), 1453-1459.  doi: 10.1109/TAC.2021.3062565.
    [13] F. MazencM. Malisoff and H. Özbay, Stability and robustness analysis for switched systems with time-varying delays, SIAM Journal on Control and Optimization, 56 (2018), 158-182.  doi: 10.1137/16M1104895.
    [14] A. Mironchenko, Local input-to-state stability: Characterizations and counterexamples, Systems Control Letters, 87 (2016), 23-28.  doi: 10.1016/j.sysconle.2015.10.014.
    [15] P. Pepe, A nonlinear version of Halanay's inequality for the uniform convergence to the origin, Mathematical Control and Related Fields, 12 (2022), 789-811.  doi: 10.3934/mcrf.2021045.
    [16] P. Pepe and E. Fridman, On global exponential stability preservation under sampling for globally Lipschitz time-delay systems, Automatica, 82 (2017), 295-300.  doi: 10.1016/j.automatica.2017.04.055.
    [17] A. Selivanov and E. Fridman, Distributed event-triggered control of transport-reaction systems, IFAC-PapersOnLine, 48 (2015), 593-597.  doi: 10.1016/j.ifacol.2015.09.251.
    [18] E. Sontag, Mathematical Control Theory, 2$^{nd}$ edition, Springer, New York, 1998. doi: 10.1007/978-1-4612-0577-7.
    [19] E. Sontag, The ISS philosophy as a unifying framework for stability-like behavior, Nonlinear Control in the Year 2000, 2 (2001), 443-467. 
    [20] X. Zhao and F. Deng, Time-varying Halanay inequalities with application to stability and control of delayed stochastic systems, IEEE Transactions on Automatic Control, 67 (2022), 1226-1240. 
  • 加载中
SHARE

Article Metrics

HTML views(1399) PDF downloads(306) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return