# American Institute of Mathematical Sciences

February  2018, 1(1): 49-61. doi: 10.3934/mfc.2018003

## L(2, 1)-labeling of the Cartesian and strong product of two directed cycles

 1 Research Institute of Intelligence Software, Guangzhou University, Guangzhou 510006, China 2 School of Information Science and Engineering, Chengdu University, Chengdu 610106, China 3 Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia

Received  October 2017 Revised  December 2017 Published  February 2018

Fund Project: Supported by the National Key Research and Development Program under grant 2017YFB0802300, the National Natural Science Foundation of China under the grant No. 61309015 and by the Ministry of Science of Slovenia under the grant 0101-P-297, and Applied Basic Research (Key Project) of Sichuan Province under grant 2017JY0095.

The frequency assignment problem (FAP) is the assignment of frequencies to television and radio transmitters subject to restrictions imposed by the distance between transmitters. One of the graph theoretical models of FAP which is well elaborated is the concept of distance constrained labeling of graphs. Let $G = (V, E)$ be a graph. For two vertices $u$ and $v$ of $G$, we denote $d(u, v)$ the distance between $u$ and $v$. An $L(2, 1)$-labeling for $G$ is a function $f: V → \{0, 1, ···\}$ such that $|f(u)-f(v)| ≥ 1$ if $d(u, v) = 2$ and $|f(u)-f(v)| ≥ 2$ if $d(u, v) = 1$. The span of $f$ is the difference between the largest and the smallest number of $f(V)$. The $λ$-number for $G$, denoted by $λ(G)$, is the minimum span over all $L(2, 1)$-labelings of $G$. In this paper, we study the $λ$-number of the Cartesian and strong product of two directed cycles. We show that for $m, n ≥ 4$ the $λ$-number of $\overrightarrow{C_m} \Box \overrightarrow{C_n}$ is between 4 and 5. We also establish the $λ$-number of $\overrightarrow{{{C}_{m}}}\boxtimes \overrightarrow{{{C}_{n}}}$ for $m ≤ 10$ and prove that the $λ$-number of the strong product of cycles $\overrightarrow{{{C}_{m}}}\boxtimes \overrightarrow{{{C}_{n}}}$ is between 6 and 8 for $m, n ≥ 48$.

Citation: Zehui Shao, Huiqin Jiang, Aleksander Vesel. L(2, 1)-labeling of the Cartesian and strong product of two directed cycles. Mathematical Foundations of Computing, 2018, 1 (1) : 49-61. doi: 10.3934/mfc.2018003
##### References:
 [1] K. I. Aardal, S. P. M. van Hoesel, A. M. C. A. Koster, C. Mannino and A. Sassano, Models and solution techniques for frequency assignment problems, Ann. Oper. Res., 153 (2007), 79-129.  doi: 10.1007/s10479-007-0178-0. [2] H. L. Bodlaender, T. Kloks, R. B. Tan and J. van Leeuwen, Approximations for λ-coloring of graphs, The Computer Journal, 47 (2004), 193-204. [3] M. Bouznif, J. Moncel and M. Preissmann, Generic algorithms for some decision problems on fasciagraphs and rotagraphs, Discrete Math., 312 (2012), 2707-2719.  doi: 10.1016/j.disc.2012.02.013. [4] T. Calamoneri and B. Sinaimeri, L(2, 1)-labeling of oriented planar graphs, Discrete Appl. Math., 161 (2013), 1719-1725.  doi: 10.1016/j.dam.2012.07.009. [5] T. Calamoneri, The L(2, 1)-labeling problem on oriented regular grids, The Computer Journal, 54 (2011), 1869-1875. [6] T. Calamoneri, The L(h, k)-labelling problem: An updated survey and annotated bibliography, The Computer Journal, 54 (2011), 1344-1371.  doi: 10.1093/comjnl/bxr037. [7] G. J. Chang and D. Kuo, The L(2, 1)-labeling problem on graphs, SIAM J. Discrete Math., 9 (1996), 309-316.  doi: 10.1137/S0895480193245339. [8] G. J. Chang and S. Liaw, The L(2, 1)-labeling problem on ditrees, Ars Combin., 66 (2003), 23-31. [9] G. J. Chang, J. Chen, D. Kuo and S. Liaw, Distance-two labelings of digraphs, Discrete Appl. Math., 155 (2007), 1007-1013.  doi: 10.1016/j.dam.2006.11.001. [10] Y. Chen, M. Chia and D. Kuo, L(p, q)-labeling of digraphs, Discrete Appl. Math., 157 (2009), 1750-1759.  doi: 10.1016/j.dam.2008.12.007. [11] J. Fiala, T. Kloks and J. Kratochvíl, Fixed-parameter complexity of λ-labelings, Discrete Appl. Math., 113 (2001), 59-72.  doi: 10.1016/S0166-218X(00)00387-5. [12] J. Fiala, P. A. Golovach and J. Kratochvíl, Distance constrained labelings of graphs of bounded treewidth, Proc. 32th ICALP, 3580 (2005), 360-372. [13] D. Goncalves, On the L(p, 1)-labelling of graphs, Discrete Math., 308 (2008), 1405-1414.  doi: 10.1016/j.disc.2007.07.075. [14] J. R. Griggs and R. K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete Math., 5 (1992), 586-595.  doi: 10.1137/0405048. [15] W. K. Hale, Frequency assignment: Theory and applications, Proc. IEEE, 68 (1980), 1497-1514.  doi: 10.1109/PROC.1980.11899. [16] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, 2nd edition, CRC Press, Boca Raton, 2011. [17] P. K. Jha, S. Klavžar and A. Vesel, L(2, 1)-labeling of direct product of paths and cycles, Discrete. Appl. Math., 145 (2005), 317-325.  doi: 10.1016/j.dam.2004.01.019. [18] S. Klavžar and A. Vesel, Computing graph invariants on rotagraphs using dynamic algorithm approach: the case of (2, 1)-colorings and independence numbers, Discrete Appl. Math., 129 (2003), 449-460.  doi: 10.1016/S0166-218X(02)00597-8. [19] D. Korže and A. Vesel, L(2, 1)-labeling of strong products of cycles, Inf. Process. Lett., 94 (2005), 183-190.  doi: 10.1016/j.ipl.2005.01.007. [20] D. Král and R. Škrekovski, A theorem about channel assignment problem, SIAM J. Discrete Math., 16 (2003), 426-437.  doi: 10.1137/S0895480101399449. [21] J. Kratochvíl, D. Kratsch and M. Liedloff, Exact algorithms for L(2, 1)-labeling of graphs, Proc. 32nd MFCS, 4708 (2007), 513-524. [22] M. Liang, X. Xu, J. Liang and Z. Shao, Upper bounds on the connection probability for 2-D meshes and tori, J. Parallel and Distrib. Comput., 72 (2012), 185-194.  doi: 10.1016/j.jpdc.2011.11.006. [23] S. Sen, 2-dipath and oriented L(2, 1)-labelings of some families of oriented planar graphs, Electronic Notes in Discrete Math., 38 (2011), 771-776.  doi: 10.1016/j.endm.2011.10.029. [24] Z. Shao and A. Vesel, Integer linear programming model and satisfiability test reduction for distance constrained labellings of graphs: the case of L(3, 2, 1)-labelling for products of paths and cycles, IET Communications, 7 (2013), 715-720. [25] J. J. Sylvester, Mathematical questions with their solutions, Educational Times, 41 (1884), 171-178. [26] M. El-Zahar, S. Khamis and K. Nazzal, On the Domination number of the Cartesian product of the cycle of length n and any graph, Discrete Appl. Math., 155 (2007), 515-522.  doi: 10.1016/j.dam.2006.07.003. [27] X. Zhang and J. Qian, L(p, q)-labeling and integer flow on planar graphs, The Computer Journal, 56 (2013), 785-792.

show all references

##### References:
 [1] K. I. Aardal, S. P. M. van Hoesel, A. M. C. A. Koster, C. Mannino and A. Sassano, Models and solution techniques for frequency assignment problems, Ann. Oper. Res., 153 (2007), 79-129.  doi: 10.1007/s10479-007-0178-0. [2] H. L. Bodlaender, T. Kloks, R. B. Tan and J. van Leeuwen, Approximations for λ-coloring of graphs, The Computer Journal, 47 (2004), 193-204. [3] M. Bouznif, J. Moncel and M. Preissmann, Generic algorithms for some decision problems on fasciagraphs and rotagraphs, Discrete Math., 312 (2012), 2707-2719.  doi: 10.1016/j.disc.2012.02.013. [4] T. Calamoneri and B. Sinaimeri, L(2, 1)-labeling of oriented planar graphs, Discrete Appl. Math., 161 (2013), 1719-1725.  doi: 10.1016/j.dam.2012.07.009. [5] T. Calamoneri, The L(2, 1)-labeling problem on oriented regular grids, The Computer Journal, 54 (2011), 1869-1875. [6] T. Calamoneri, The L(h, k)-labelling problem: An updated survey and annotated bibliography, The Computer Journal, 54 (2011), 1344-1371.  doi: 10.1093/comjnl/bxr037. [7] G. J. Chang and D. Kuo, The L(2, 1)-labeling problem on graphs, SIAM J. Discrete Math., 9 (1996), 309-316.  doi: 10.1137/S0895480193245339. [8] G. J. Chang and S. Liaw, The L(2, 1)-labeling problem on ditrees, Ars Combin., 66 (2003), 23-31. [9] G. J. Chang, J. Chen, D. Kuo and S. Liaw, Distance-two labelings of digraphs, Discrete Appl. Math., 155 (2007), 1007-1013.  doi: 10.1016/j.dam.2006.11.001. [10] Y. Chen, M. Chia and D. Kuo, L(p, q)-labeling of digraphs, Discrete Appl. Math., 157 (2009), 1750-1759.  doi: 10.1016/j.dam.2008.12.007. [11] J. Fiala, T. Kloks and J. Kratochvíl, Fixed-parameter complexity of λ-labelings, Discrete Appl. Math., 113 (2001), 59-72.  doi: 10.1016/S0166-218X(00)00387-5. [12] J. Fiala, P. A. Golovach and J. Kratochvíl, Distance constrained labelings of graphs of bounded treewidth, Proc. 32th ICALP, 3580 (2005), 360-372. [13] D. Goncalves, On the L(p, 1)-labelling of graphs, Discrete Math., 308 (2008), 1405-1414.  doi: 10.1016/j.disc.2007.07.075. [14] J. R. Griggs and R. K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete Math., 5 (1992), 586-595.  doi: 10.1137/0405048. [15] W. K. Hale, Frequency assignment: Theory and applications, Proc. IEEE, 68 (1980), 1497-1514.  doi: 10.1109/PROC.1980.11899. [16] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, 2nd edition, CRC Press, Boca Raton, 2011. [17] P. K. Jha, S. Klavžar and A. Vesel, L(2, 1)-labeling of direct product of paths and cycles, Discrete. Appl. Math., 145 (2005), 317-325.  doi: 10.1016/j.dam.2004.01.019. [18] S. Klavžar and A. Vesel, Computing graph invariants on rotagraphs using dynamic algorithm approach: the case of (2, 1)-colorings and independence numbers, Discrete Appl. Math., 129 (2003), 449-460.  doi: 10.1016/S0166-218X(02)00597-8. [19] D. Korže and A. Vesel, L(2, 1)-labeling of strong products of cycles, Inf. Process. Lett., 94 (2005), 183-190.  doi: 10.1016/j.ipl.2005.01.007. [20] D. Král and R. Škrekovski, A theorem about channel assignment problem, SIAM J. Discrete Math., 16 (2003), 426-437.  doi: 10.1137/S0895480101399449. [21] J. Kratochvíl, D. Kratsch and M. Liedloff, Exact algorithms for L(2, 1)-labeling of graphs, Proc. 32nd MFCS, 4708 (2007), 513-524. [22] M. Liang, X. Xu, J. Liang and Z. Shao, Upper bounds on the connection probability for 2-D meshes and tori, J. Parallel and Distrib. Comput., 72 (2012), 185-194.  doi: 10.1016/j.jpdc.2011.11.006. [23] S. Sen, 2-dipath and oriented L(2, 1)-labelings of some families of oriented planar graphs, Electronic Notes in Discrete Math., 38 (2011), 771-776.  doi: 10.1016/j.endm.2011.10.029. [24] Z. Shao and A. Vesel, Integer linear programming model and satisfiability test reduction for distance constrained labellings of graphs: the case of L(3, 2, 1)-labelling for products of paths and cycles, IET Communications, 7 (2013), 715-720. [25] J. J. Sylvester, Mathematical questions with their solutions, Educational Times, 41 (1884), 171-178. [26] M. El-Zahar, S. Khamis and K. Nazzal, On the Domination number of the Cartesian product of the cycle of length n and any graph, Discrete Appl. Math., 155 (2007), 515-522.  doi: 10.1016/j.dam.2006.07.003. [27] X. Zhang and J. Qian, L(p, q)-labeling and integer flow on planar graphs, The Computer Journal, 56 (2013), 785-792.
(a) Cartesian product of $\overrightarrow{P}_6$ and $\overrightarrow{P}_6$ (b) Cartesian product of $\overrightarrow{C}_6$ and $\overrightarrow{C}_6$
A 5- $L(2, 1)$-labeling of $\overrightarrow{C_{11}} \Box \overrightarrow{C_{11}}$
An 8- $L(2, 1)$-labeling of $\overrightarrow{C_{13}} \boxtimes \overrightarrow{C_{13}}$
An 8- $L(2, 1)$-labeling of $\overrightarrow{C_{5}} \boxtimes \overrightarrow{C_{13}}$
An 8- $L(2, 1)$-labeling of $\overrightarrow{C_{6}} \boxtimes \overrightarrow{C_{13}}$
An 8- $L(2, 1)$-labeling of $\overrightarrow{C_{7}} \boxtimes \overrightarrow{C_{23}}$
An 8- $L(2, 1)$-labeling of $\overrightarrow{C_{8}} \boxtimes \overrightarrow{C_{17}}$
An 8- $L(2, 1)$-labeling of $\overrightarrow{C_{9}} \boxtimes \overrightarrow{C_{17}}$
An 8- $L(2, 1)$-labeling of $\overrightarrow{C_{10}} \boxtimes \overrightarrow{C_{21}}$
Summary of results on $\lambda( \overrightarrow{C_m} \boxtimes \overrightarrow{C_n})$
 $m$ $k$ $|D_{m, k}|$ $\max\{d^+\}$ cycle lengths result 3 7 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{3}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 3 8 120 1 $\{9\}$ if $n \textrm{ mod }9 \equiv 0$, then $\lambda(\overrightarrow{{{C}_{3}}}\boxtimes \overrightarrow{{{C}_{n}}}) \leq 8$; otherwise $\lambda(\overrightarrow{{{C}_{3}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 9$. 3 9 1800 4 ? $D_{3, 9}$ contains no closed walk of length from $\{3, 4, 5, 7, 8, 11, 14, 17\}$, thus $\lambda(\overrightarrow{{{C}_{3}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 10$ for $n \in \{3, 4, 5, 7, 8, 11, 14, 17\}$. 4 6 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{4}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 7$. 4 7 72 1 $\{16\}$ if $n \equiv 0 \textrm{ mod } 16$, then $\lambda(\overrightarrow{{{C}_{4}}}\boxtimes \overrightarrow{{{C}_{n}}}) \leq 7$; otherwise $\lambda(\overrightarrow{{{C}_{4}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 4 8 2664 5 ? $D_{4, 8}$ contains no closed walk of length from $S_4$, thus $\lambda(\overrightarrow{{{C}_{4}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 9$ for $n \in S_4$. 5 7 40 1 $\emptyset$ $\lambda(\overrightarrow{{{C}_{5}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 5 8 10200 10 ? $D_{5, 8}$ contains no closed walk of length from $\{6, 7, 12\}$, thus $\lambda(\overrightarrow{{{C}_{5}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 9$ for $n \in \{6, 7, 12\}$. 6 6 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{6}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 7$. 6 7 540 4 $\{6\}$ if $n \equiv 0 \textrm{ mod } 6$, then $\lambda(\overrightarrow{{{C}_{6}}}\boxtimes \overrightarrow{{{C}_{n}}}) \leq 7$; otherwise $\lambda(\overrightarrow{{{C}_{6}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 6 8 72534 27 ? $D_{6, 8}$ contains no closed walk of length 11, thus $\lambda(\overrightarrow{{{C}_{6}}}\boxtimes \overrightarrow{{{C}_{11}}}) \geq 9$. 7 6 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{7}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 7$. 7 7 2296 8 ? $D_{7, 7}$ contains no closed walk of length from $S_7$, thus $\lambda(\overrightarrow{{{C}_{7}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$ for $n \in S_7$. 8 6 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{8}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 7$. Continued on next page 8 7 720 1 $\{8, 16\}$ $n \equiv 0 \textrm{ mod } 8$, then $\lambda(\overrightarrow{{{C}_{8}}}\boxtimes \overrightarrow{{{C}_{n}}}) \leq 7$; otherwise $\lambda(\overrightarrow{{{C}_{8}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 9 7 1530 2 $\emptyset$ $\lambda(\overrightarrow{{{C}_{9}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 10 6 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{10}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 7$. 10 7 16100 6 ? $D_{10, 7}$ contains no closed walk of length from $S_{10}$, thus $\lambda(\overrightarrow{{{C}_{10}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$ for $n \in S_{10}$.
 $m$ $k$ $|D_{m, k}|$ $\max\{d^+\}$ cycle lengths result 3 7 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{3}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 3 8 120 1 $\{9\}$ if $n \textrm{ mod }9 \equiv 0$, then $\lambda(\overrightarrow{{{C}_{3}}}\boxtimes \overrightarrow{{{C}_{n}}}) \leq 8$; otherwise $\lambda(\overrightarrow{{{C}_{3}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 9$. 3 9 1800 4 ? $D_{3, 9}$ contains no closed walk of length from $\{3, 4, 5, 7, 8, 11, 14, 17\}$, thus $\lambda(\overrightarrow{{{C}_{3}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 10$ for $n \in \{3, 4, 5, 7, 8, 11, 14, 17\}$. 4 6 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{4}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 7$. 4 7 72 1 $\{16\}$ if $n \equiv 0 \textrm{ mod } 16$, then $\lambda(\overrightarrow{{{C}_{4}}}\boxtimes \overrightarrow{{{C}_{n}}}) \leq 7$; otherwise $\lambda(\overrightarrow{{{C}_{4}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 4 8 2664 5 ? $D_{4, 8}$ contains no closed walk of length from $S_4$, thus $\lambda(\overrightarrow{{{C}_{4}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 9$ for $n \in S_4$. 5 7 40 1 $\emptyset$ $\lambda(\overrightarrow{{{C}_{5}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 5 8 10200 10 ? $D_{5, 8}$ contains no closed walk of length from $\{6, 7, 12\}$, thus $\lambda(\overrightarrow{{{C}_{5}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 9$ for $n \in \{6, 7, 12\}$. 6 6 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{6}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 7$. 6 7 540 4 $\{6\}$ if $n \equiv 0 \textrm{ mod } 6$, then $\lambda(\overrightarrow{{{C}_{6}}}\boxtimes \overrightarrow{{{C}_{n}}}) \leq 7$; otherwise $\lambda(\overrightarrow{{{C}_{6}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 6 8 72534 27 ? $D_{6, 8}$ contains no closed walk of length 11, thus $\lambda(\overrightarrow{{{C}_{6}}}\boxtimes \overrightarrow{{{C}_{11}}}) \geq 9$. 7 6 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{7}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 7$. 7 7 2296 8 ? $D_{7, 7}$ contains no closed walk of length from $S_7$, thus $\lambda(\overrightarrow{{{C}_{7}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$ for $n \in S_7$. 8 6 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{8}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 7$. Continued on next page 8 7 720 1 $\{8, 16\}$ $n \equiv 0 \textrm{ mod } 8$, then $\lambda(\overrightarrow{{{C}_{8}}}\boxtimes \overrightarrow{{{C}_{n}}}) \leq 7$; otherwise $\lambda(\overrightarrow{{{C}_{8}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 9 7 1530 2 $\emptyset$ $\lambda(\overrightarrow{{{C}_{9}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 10 6 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{10}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 7$. 10 7 16100 6 ? $D_{10, 7}$ contains no closed walk of length from $S_{10}$, thus $\lambda(\overrightarrow{{{C}_{10}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$ for $n \in S_{10}$.
 [1] Shuangliang Tian, Ping Chen, Yabin Shao, Qian Wang. Adjacent vertex distinguishing edge-colorings and total-colorings of the Cartesian product of graphs. Numerical Algebra, Control and Optimization, 2014, 4 (1) : 49-58. doi: 10.3934/naco.2014.4.49 [2] Hongyong Cui, Peter E. Kloeden, Wenqiang Zhao. Strong $(L^2,L^\gamma\cap H_0^1)$-continuity in initial data of nonlinear reaction-diffusion equation in any space dimension. Electronic Research Archive, 2020, 28 (3) : 1357-1374. doi: 10.3934/era.2020072 [3] Ismet Cinar, Ozgur Ege, Ismet Karaca. The digital smash product. Electronic Research Archive, 2020, 28 (1) : 459-469. doi: 10.3934/era.2020026 [4] Stefano Luzzatto, Marks Ruziboev. Young towers for product systems. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1465-1491. doi: 10.3934/dcds.2016.36.1465 [5] Nir Avni, Benjamin Weiss. Generating product systems. Journal of Modern Dynamics, 2010, 4 (2) : 257-270. doi: 10.3934/jmd.2010.4.257 [6] Jin Wang, Jun-E Feng, Hua-Lin Huang. Solvability of the matrix equation $AX^{2} = B$ with semi-tensor product. Electronic Research Archive, 2021, 29 (3) : 2249-2267. doi: 10.3934/era.2020114 [7] Haritha C, Nikita Agarwal. Product of expansive Markov maps with hole. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5743-5774. doi: 10.3934/dcds.2019252 [8] Boris Hasselblatt and Jorg Schmeling. Dimension product structure of hyperbolic sets. Electronic Research Announcements, 2004, 10: 88-96. [9] Hsin-Yi Liu, Hsing Paul Luh. Kronecker product-forms of steady-state probabilities with $C_k$/$C_m$/$1$ by matrix polynomial approaches. Numerical Algebra, Control and Optimization, 2011, 1 (4) : 691-711. doi: 10.3934/naco.2011.1.691 [10] Lucas Colucci, Ervin Győri. On ${L}(2,1)$-labelings of some products of oriented cycles. Mathematical Foundations of Computing, 2022, 5 (1) : 67-74. doi: 10.3934/mfc.2021029 [11] Hua Liang, Jinquan Luo, Yuansheng Tang. On cross-correlation of a binary $m$-sequence of period $2^{2k}-1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693-703. doi: 10.3934/amc.2017050 [12] Sara D. Cardell, Joan-Josep Climent. An approach to the performance of SPC product codes on the erasure channel. Advances in Mathematics of Communications, 2016, 10 (1) : 11-28. doi: 10.3934/amc.2016.10.11 [13] Valentina Casarino, Paolo Ciatti, Silvia Secco. Product structures and fractional integration along curves in the space. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 619-635. doi: 10.3934/dcdss.2013.6.619 [14] Peng Sun. Measures of intermediate entropies for skew product diffeomorphisms. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1219-1231. doi: 10.3934/dcds.2010.27.1219 [15] Jianbin Li, Ruina Yang, Niu Yu. Optimal capacity reservation policy on innovative product. Journal of Industrial and Management Optimization, 2013, 9 (4) : 799-825. doi: 10.3934/jimo.2013.9.799 [16] Patrick Bonckaert, Timoteo Carletti, Ernest Fontich. On dynamical systems close to a product of $m$ rotations. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 349-366. doi: 10.3934/dcds.2009.24.349 [17] Sebastián Donoso, Wenbo Sun. Dynamical cubes and a criteria for systems having product extensions. Journal of Modern Dynamics, 2015, 9: 365-405. doi: 10.3934/jmd.2015.9.365 [18] Ioannis Konstantoulas. Effective decay of multiple correlations in semidirect product actions. Journal of Modern Dynamics, 2016, 10: 81-111. doi: 10.3934/jmd.2016.10.81 [19] Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 265-281. doi: 10.3934/dcdss.2021004 [20] Heinz Schättler, Urszula Ledzewicz, Helmut Maurer. Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2657-2679. doi: 10.3934/dcdsb.2014.19.2657

Impact Factor: