# American Institute of Mathematical Sciences

February  2018, 1(1): 49-61. doi: 10.3934/mfc.2018003

## L(2, 1)-labeling of the Cartesian and strong product of two directed cycles

 1 Research Institute of Intelligence Software, Guangzhou University, Guangzhou 510006, China 2 School of Information Science and Engineering, Chengdu University, Chengdu 610106, China 3 Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia

Received  October 2017 Revised  December 2017 Published  February 2018

Fund Project: Supported by the National Key Research and Development Program under grant 2017YFB0802300, the National Natural Science Foundation of China under the grant No. 61309015 and by the Ministry of Science of Slovenia under the grant 0101-P-297, and Applied Basic Research (Key Project) of Sichuan Province under grant 2017JY0095.

The frequency assignment problem (FAP) is the assignment of frequencies to television and radio transmitters subject to restrictions imposed by the distance between transmitters. One of the graph theoretical models of FAP which is well elaborated is the concept of distance constrained labeling of graphs. Let $G = (V, E)$ be a graph. For two vertices $u$ and $v$ of $G$, we denote $d(u, v)$ the distance between $u$ and $v$. An $L(2, 1)$-labeling for $G$ is a function $f: V → \{0, 1, ···\}$ such that $|f(u)-f(v)| ≥ 1$ if $d(u, v) = 2$ and $|f(u)-f(v)| ≥ 2$ if $d(u, v) = 1$. The span of $f$ is the difference between the largest and the smallest number of $f(V)$. The $λ$-number for $G$, denoted by $λ(G)$, is the minimum span over all $L(2, 1)$-labelings of $G$. In this paper, we study the $λ$-number of the Cartesian and strong product of two directed cycles. We show that for $m, n ≥ 4$ the $λ$-number of $\overrightarrow{C_m} \Box \overrightarrow{C_n}$ is between 4 and 5. We also establish the $λ$-number of $\overrightarrow{{{C}_{m}}}\boxtimes \overrightarrow{{{C}_{n}}}$ for $m ≤ 10$ and prove that the $λ$-number of the strong product of cycles $\overrightarrow{{{C}_{m}}}\boxtimes \overrightarrow{{{C}_{n}}}$ is between 6 and 8 for $m, n ≥ 48$.

Citation: Zehui Shao, Huiqin Jiang, Aleksander Vesel. L(2, 1)-labeling of the Cartesian and strong product of two directed cycles. Mathematical Foundations of Computing, 2018, 1 (1) : 49-61. doi: 10.3934/mfc.2018003
##### References:

show all references

##### References:
(a) Cartesian product of $\overrightarrow{P}_6$ and $\overrightarrow{P}_6$ (b) Cartesian product of $\overrightarrow{C}_6$ and $\overrightarrow{C}_6$
A 5- $L(2, 1)$-labeling of $\overrightarrow{C_{11}} \Box \overrightarrow{C_{11}}$
An 8- $L(2, 1)$-labeling of $\overrightarrow{C_{13}} \boxtimes \overrightarrow{C_{13}}$
An 8- $L(2, 1)$-labeling of $\overrightarrow{C_{5}} \boxtimes \overrightarrow{C_{13}}$
An 8- $L(2, 1)$-labeling of $\overrightarrow{C_{6}} \boxtimes \overrightarrow{C_{13}}$
An 8- $L(2, 1)$-labeling of $\overrightarrow{C_{7}} \boxtimes \overrightarrow{C_{23}}$
An 8- $L(2, 1)$-labeling of $\overrightarrow{C_{8}} \boxtimes \overrightarrow{C_{17}}$
An 8- $L(2, 1)$-labeling of $\overrightarrow{C_{9}} \boxtimes \overrightarrow{C_{17}}$
An 8- $L(2, 1)$-labeling of $\overrightarrow{C_{10}} \boxtimes \overrightarrow{C_{21}}$
Summary of results on $\lambda( \overrightarrow{C_m} \boxtimes \overrightarrow{C_n})$
 $m$ $k$ $|D_{m, k}|$ $\max\{d^+\}$ cycle lengths result 3 7 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{3}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 3 8 120 1 $\{9\}$ if $n \textrm{ mod }9 \equiv 0$, then $\lambda(\overrightarrow{{{C}_{3}}}\boxtimes \overrightarrow{{{C}_{n}}}) \leq 8$; otherwise $\lambda(\overrightarrow{{{C}_{3}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 9$. 3 9 1800 4 ? $D_{3, 9}$ contains no closed walk of length from $\{3, 4, 5, 7, 8, 11, 14, 17\}$, thus $\lambda(\overrightarrow{{{C}_{3}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 10$ for $n \in \{3, 4, 5, 7, 8, 11, 14, 17\}$. 4 6 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{4}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 7$. 4 7 72 1 $\{16\}$ if $n \equiv 0 \textrm{ mod } 16$, then $\lambda(\overrightarrow{{{C}_{4}}}\boxtimes \overrightarrow{{{C}_{n}}}) \leq 7$; otherwise $\lambda(\overrightarrow{{{C}_{4}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 4 8 2664 5 ? $D_{4, 8}$ contains no closed walk of length from $S_4$, thus $\lambda(\overrightarrow{{{C}_{4}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 9$ for $n \in S_4$. 5 7 40 1 $\emptyset$ $\lambda(\overrightarrow{{{C}_{5}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 5 8 10200 10 ? $D_{5, 8}$ contains no closed walk of length from $\{6, 7, 12\}$, thus $\lambda(\overrightarrow{{{C}_{5}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 9$ for $n \in \{6, 7, 12\}$. 6 6 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{6}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 7$. 6 7 540 4 $\{6\}$ if $n \equiv 0 \textrm{ mod } 6$, then $\lambda(\overrightarrow{{{C}_{6}}}\boxtimes \overrightarrow{{{C}_{n}}}) \leq 7$; otherwise $\lambda(\overrightarrow{{{C}_{6}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 6 8 72534 27 ? $D_{6, 8}$ contains no closed walk of length 11, thus $\lambda(\overrightarrow{{{C}_{6}}}\boxtimes \overrightarrow{{{C}_{11}}}) \geq 9$. 7 6 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{7}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 7$. 7 7 2296 8 ? $D_{7, 7}$ contains no closed walk of length from $S_7$, thus $\lambda(\overrightarrow{{{C}_{7}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$ for $n \in S_7$. 8 6 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{8}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 7$. Continued on next page 8 7 720 1 $\{8, 16\}$ $n \equiv 0 \textrm{ mod } 8$, then $\lambda(\overrightarrow{{{C}_{8}}}\boxtimes \overrightarrow{{{C}_{n}}}) \leq 7$; otherwise $\lambda(\overrightarrow{{{C}_{8}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 9 7 1530 2 $\emptyset$ $\lambda(\overrightarrow{{{C}_{9}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 10 6 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{10}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 7$. 10 7 16100 6 ? $D_{10, 7}$ contains no closed walk of length from $S_{10}$, thus $\lambda(\overrightarrow{{{C}_{10}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$ for $n \in S_{10}$.
 $m$ $k$ $|D_{m, k}|$ $\max\{d^+\}$ cycle lengths result 3 7 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{3}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 3 8 120 1 $\{9\}$ if $n \textrm{ mod }9 \equiv 0$, then $\lambda(\overrightarrow{{{C}_{3}}}\boxtimes \overrightarrow{{{C}_{n}}}) \leq 8$; otherwise $\lambda(\overrightarrow{{{C}_{3}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 9$. 3 9 1800 4 ? $D_{3, 9}$ contains no closed walk of length from $\{3, 4, 5, 7, 8, 11, 14, 17\}$, thus $\lambda(\overrightarrow{{{C}_{3}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 10$ for $n \in \{3, 4, 5, 7, 8, 11, 14, 17\}$. 4 6 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{4}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 7$. 4 7 72 1 $\{16\}$ if $n \equiv 0 \textrm{ mod } 16$, then $\lambda(\overrightarrow{{{C}_{4}}}\boxtimes \overrightarrow{{{C}_{n}}}) \leq 7$; otherwise $\lambda(\overrightarrow{{{C}_{4}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 4 8 2664 5 ? $D_{4, 8}$ contains no closed walk of length from $S_4$, thus $\lambda(\overrightarrow{{{C}_{4}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 9$ for $n \in S_4$. 5 7 40 1 $\emptyset$ $\lambda(\overrightarrow{{{C}_{5}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 5 8 10200 10 ? $D_{5, 8}$ contains no closed walk of length from $\{6, 7, 12\}$, thus $\lambda(\overrightarrow{{{C}_{5}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 9$ for $n \in \{6, 7, 12\}$. 6 6 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{6}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 7$. 6 7 540 4 $\{6\}$ if $n \equiv 0 \textrm{ mod } 6$, then $\lambda(\overrightarrow{{{C}_{6}}}\boxtimes \overrightarrow{{{C}_{n}}}) \leq 7$; otherwise $\lambda(\overrightarrow{{{C}_{6}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 6 8 72534 27 ? $D_{6, 8}$ contains no closed walk of length 11, thus $\lambda(\overrightarrow{{{C}_{6}}}\boxtimes \overrightarrow{{{C}_{11}}}) \geq 9$. 7 6 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{7}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 7$. 7 7 2296 8 ? $D_{7, 7}$ contains no closed walk of length from $S_7$, thus $\lambda(\overrightarrow{{{C}_{7}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$ for $n \in S_7$. 8 6 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{8}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 7$. Continued on next page 8 7 720 1 $\{8, 16\}$ $n \equiv 0 \textrm{ mod } 8$, then $\lambda(\overrightarrow{{{C}_{8}}}\boxtimes \overrightarrow{{{C}_{n}}}) \leq 7$; otherwise $\lambda(\overrightarrow{{{C}_{8}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 9 7 1530 2 $\emptyset$ $\lambda(\overrightarrow{{{C}_{9}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$. 10 6 0 0 $\emptyset$ $\lambda(\overrightarrow{{{C}_{10}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 7$. 10 7 16100 6 ? $D_{10, 7}$ contains no closed walk of length from $S_{10}$, thus $\lambda(\overrightarrow{{{C}_{10}}}\boxtimes \overrightarrow{{{C}_{n}}}) \geq 8$ for $n \in S_{10}$.
 [1] Shuangliang Tian, Ping Chen, Yabin Shao, Qian Wang. Adjacent vertex distinguishing edge-colorings and total-colorings of the Cartesian product of graphs. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 49-58. doi: 10.3934/naco.2014.4.49 [2] Stefano Luzzatto, Marks Ruziboev. Young towers for product systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1465-1491. doi: 10.3934/dcds.2016.36.1465 [3] Nir Avni, Benjamin Weiss. Generating product systems. Journal of Modern Dynamics, 2010, 4 (2) : 257-270. doi: 10.3934/jmd.2010.4.257 [4] Ismet Cinar, Ozgur Ege, Ismet Karaca. The digital smash product. Electronic Research Archive, 2020, 28 (1) : 459-469. doi: 10.3934/era.2020026 [5] Boris Hasselblatt and Jorg Schmeling. Dimension product structure of hyperbolic sets. Electronic Research Announcements, 2004, 10: 88-96. [6] Haritha C, Nikita Agarwal. Product of expansive Markov maps with hole. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5743-5774. doi: 10.3934/dcds.2019252 [7] Hsin-Yi Liu, Hsing Paul Luh. Kronecker product-forms of steady-state probabilities with $C_k$/$C_m$/$1$ by matrix polynomial approaches. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 691-711. doi: 10.3934/naco.2011.1.691 [8] Sara D. Cardell, Joan-Josep Climent. An approach to the performance of SPC product codes on the erasure channel. Advances in Mathematics of Communications, 2016, 10 (1) : 11-28. doi: 10.3934/amc.2016.10.11 [9] Peng Sun. Measures of intermediate entropies for skew product diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1219-1231. doi: 10.3934/dcds.2010.27.1219 [10] Valentina Casarino, Paolo Ciatti, Silvia Secco. Product structures and fractional integration along curves in the space. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 619-635. doi: 10.3934/dcdss.2013.6.619 [11] Jianbin Li, Ruina Yang, Niu Yu. Optimal capacity reservation policy on innovative product. Journal of Industrial & Management Optimization, 2013, 9 (4) : 799-825. doi: 10.3934/jimo.2013.9.799 [12] Patrick Bonckaert, Timoteo Carletti, Ernest Fontich. On dynamical systems close to a product of $m$ rotations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 349-366. doi: 10.3934/dcds.2009.24.349 [13] Sebastián Donoso, Wenbo Sun. Dynamical cubes and a criteria for systems having product extensions. Journal of Modern Dynamics, 2015, 9: 365-405. doi: 10.3934/jmd.2015.9.365 [14] Ioannis Konstantoulas. Effective decay of multiple correlations in semidirect product actions. Journal of Modern Dynamics, 2016, 10: 81-111. doi: 10.3934/jmd.2016.10.81 [15] Hua Liang, Jinquan Luo, Yuansheng Tang. On cross-correlation of a binary $m$-sequence of period $2^{2k}-1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693-703. doi: 10.3934/amc.2017050 [16] Heinz Schättler, Urszula Ledzewicz, Helmut Maurer. Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2657-2679. doi: 10.3934/dcdsb.2014.19.2657 [17] Nils Dabrock, Yves van Gennip. A note on "Anisotropic total variation regularized $L^1$-approximation and denoising/deblurring of 2D bar codes". Inverse Problems & Imaging, 2018, 12 (2) : 525-526. doi: 10.3934/ipi.2018022 [18] Rustum Choksi, Yves van Gennip, Adam Oberman. Anisotropic total variation regularized $L^1$ approximation and denoising/deblurring of 2D bar codes. Inverse Problems & Imaging, 2011, 5 (3) : 591-617. doi: 10.3934/ipi.2011.5.591 [19] Boshi Tian, Xiaoqi Yang, Kaiwen Meng. An interior-point $l_{\frac{1}{2}}$-penalty method for inequality constrained nonlinear optimization. Journal of Industrial & Management Optimization, 2016, 12 (3) : 949-973. doi: 10.3934/jimo.2016.12.949 [20] Guangrong Wu, Ping Zhang. The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 631-638. doi: 10.3934/dcds.1999.5.631

Impact Factor:

## Tools

Article outline

Figures and Tables