[1]
|
P. Agrawal, R. Girshick and J. Malik, Analyzing the performance of multilayer neural networks for object recognition, in Proceedings of the European Conference on Computer Vision, 2014, 329-344.
doi: 10.1007/978-3-319-10584-0_22.
|
[2]
|
M. Arjovsky, S. Chintala and L. Bottou, Wasserstein gan, arXiv preprint, arXiv: 1701.07875.
|
[3]
|
D. Bau, B. Zhou, A. Khosla, A. Oliva and A. Torralba, Network dissection: Quantifying interpretability of deep visual representations, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, 3319-3327.
doi: 10.1109/CVPR.2017.354.
|
[4]
|
D. C. Ciresan, U. Meier, J. Masci, L. Maria Gambardella and J. Schmidhuber, Flexible, High performance convolutional neural networks for image classification, in Proceedings of the International Joint Conference on Artificial Intelligence, vol. 22, 2011, p1237.
|
[5]
|
R. Collobert, K. Kavukcuoglu and C. Farabet, Torch7: A matlab-like environment for machine learning, in Workshop on BigLearn, NIPS, 2011.
|
[6]
|
G. Csurka, C. Dance, L. Fan, J. Willamowski and C. Bray, Visual categorization with bags of keypoints, in Workshop on statistical learning in computer vision, ECCV, vol. 1, 2004, 1-2.
|
[7]
|
N. Dalal and B. Triggs, Histograms of oriented gradients for human detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2005, 886-893.
doi: 10.1109/CVPR.2005.177.
|
[8]
|
E. d'Angelo, A. Alahi and P. Vandergheynst, Beyond bits: Reconstructing images from local binary descriptors, in Proceedings of the IEEE Conference on Pattern Recognition, 2012, 935-938.
|
[9]
|
E. L. Denton, S. Chintala, R. Fergus et al., Deep generative image models using a Laplacian pyramid of adversarial networks, in Proceedings of the Advances in Neural Information Processing Systems, 2015, 1486-1494.
|
[10]
|
A. Dosovitskiy and T. Brox, Generating images with perceptual similarity metrics based on deep networks, in Proceedings of the Advances in Neural Information Processing Systems, 2016, 658-666.
|
[11]
|
A. Dosovitskiy and T. Brox, Inverting visual representations with convolutional networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 4829-4837.
doi: 10.1109/CVPR.2016.522.
|
[12]
|
A. Dosovitskiy, J. Tobias Springenberg and T. Brox, Learning to generate chairs with convolutional neural networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, 1538-1546.
doi: 10.1109/CVPR.2015.7298761.
|
[13]
|
J. Duchi, E. Hazan and Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, Journal of Machine Learning Research, 12 (2011), 2121-2159.
|
[14]
|
D. Erhan, Y. Bengio, A. Courville and P. Vincent, Visualizing higher-layer features of a deep network, Technical report, University of Montreal, (2009), p3.
|
[15]
|
P. F. Felzenszwalb, R. B. Girshick, D. McAllester and D. Ramanan, Object detection with discriminatively trained part-based models, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32 (2010), 1627-1645.
doi: 10.1109/TPAMI.2009.167.
|
[16]
|
R. Fong and A. Vedaldi, Net2vec: Quantifying and explaining how concepts are encoded by filters in deep neural networks, arXiv preprint, arXiv: 1801.03454.
|
[17]
|
L. A. Gatys, A. S. Ecker and M. Bethge, A neural algorithm of artistic style, Journal of Vision, 16 (2016), p326, arXiv: 1508.06576.
doi: 10.1167/16.12.326.
|
[18]
|
L. A. Gatys, A. S. Ecker and M. Bethge, Texture synthesis and the controlled generation of natural stimuli using convolutional neural networks, arXiv preprint, arXiv: 1505.07376, 12.
|
[19]
|
R. B. Girshick, P. F. Felzenszwalb and D. McAllester, Discriminatively trained deformable part models, release 5, http://people.cs.uchicago.edu/~rbg/latent-release5/.
|
[20]
|
R. Girshick, J. Donahue, T. Darrell and J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, 580-587.
doi: 10.1109/CVPR.2014.81.
|
[21]
|
X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in Proceedings of the International Conference on Artificial Intelligence and Statistics, 2010, 249-256.
|
[22]
|
Y. Gong, L. Wang, R. Guo and S. Lazebnik, Multi-scale orderless pooling of deep convolutional activation features, in Proceedings of the European Conference on Computer Vision, 2014, 392-407.
doi: 10.1007/978-3-319-10584-0_26.
|
[23]
|
A. Gonzalez-Garcia, D. Modolo and V. Ferrari, Do semantic parts emerge in convolutional neural networks?, International Journal of Computer Vision, 126 (2018), 476-494.
doi: 10.1007/s11263-017-1048-0.
|
[24]
|
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. Bengio, Generative adversarial nets, in Proceedings of the Advances in Neural Information Processing Systems, 2014, 2672-2680.
|
[25]
|
A. Gordo, J. Almazán, J. Revaud and D. Larlus, Deep image retrieval: Learning global representations for image search, in Proceedings of the European Conference on Computer Vision, Springer, 2016, 241-257.
doi: 10.1007/978-3-319-46466-4_15.
|
[26]
|
S. Han, H. Mao and W. J. Dally, Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, arXiv preprint, arXiv: 1510.00149.
|
[27]
|
K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2016, 770-778.
doi: 10.1109/CVPR.2016.90.
|
[28]
|
G. E. Hinton, S. Osindero and Y.-W. Teh, A fast learning algorithm for deep belief nets, Neural Computation, 18 (2006), 1527-1554.
doi: 10.1162/neco.2006.18.7.1527.
|
[29]
|
D. H. Hubel and T. N. Wiesel, Receptive fields and functional architecture of monkey striate cortex, The Journal of Physiology, 195 (1968), 215-243, URL http://dx.doi.org/10.1113/jphysiol.1968.sp008455.
doi: 10.1113/jphysiol.1968.sp008455.
|
[30]
|
D. H. Hubel and T. N. Wiesel, Receptive fields of single neurones in the cat's striate cortex, The Journal of Physiology, 148 (1959), 574-591.
doi: 10.1113/jphysiol.1959.sp006308.
|
[31]
|
S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in Proceedings of the International Conference on Machine Learning, 2015, 448-456.
|
[32]
|
S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in Proceedings of the International Conference on Machine Learning, 2015, 448-456.
|
[33]
|
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama and T. Darrell, Caffe: Convolutional architecture for fast feature embedding, in Proceedings of the International Conference on Multimedia, 2014, 675-678.
doi: 10.1145/2647868.2654889.
|
[34]
|
G.-S. Kalanit and M. Rafael, The human visual cortex, Annual Review of Neuroscience, 27 (2004), 649-677.
|
[35]
|
K. N. Kay, T. Naselaris, R. J. Prenger and J. L. Gallant, Identifying natural images from human brain activity, Nature, 452 (2008), p352.
doi: 10.1038/nature06713.
|
[36]
|
A. Krizhevsky, I. Sutskever and G. E. Hinton, Imagenet classification with deep convolutional neural networks, in Proceedings of the Advances in Neural Information Processing Systems, 2012, 1097-1150.
doi: 10.1145/3065386.
|
[37]
|
N. Kruger, P. Janssen, S. Kalkan, M. Lappe, A. Leonardis, J. Piater, A. J. Rodriguez-Sanchez and L. Wiskott, Deep hierarchies in the primate visual cortex: What can we learn for computer vision?, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2013), 1847-1871.
doi: 10.1109/TPAMI.2012.272.
|
[38]
|
A. Kurakin, I. Goodfellow and S. Bengio, Adversarial examples in the physical world, arXiv preprint, arXiv: 1607.02533.
|
[39]
|
Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86 (1998), 2278-2324.
doi: 10.1109/5.726791.
|
[40]
|
Y. LeCun, C. Cortes and C. J. Burges, The mnist database of handwritten digits, 1998.
|
[41]
|
C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang et al., Photo-realistic single image super-resolution using a generative adversarial network, in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2017.
doi: 10.1109/CVPR.2017.19.
|
[42]
|
H. Lee, C. Ekanadham and A. Y. Ng, Sparse deep belief net model for visual area v2, in Proceedings of the Advances in Neural Information Processing Systems, 2008, 873-880.
|
[43]
|
H. Lee, R. Grosse, R. Ranganath and A. Y. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in Proceedings of the International Conference on Machine Learning, 2009, 609-616.
doi: 10.1145/1553374.1553453.
|
[44]
|
T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár and C. Zitnick, Microsoft coco: common objects in context. corr abs/1405. 0312 (2014).
|
[45]
|
D. G. Lowe, Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 60 (2004), 91-110.
doi: 10.1023/B:VISI.0000029664.99615.94.
|
[46]
|
A. Mahendran and A. Vedaldi, Understanding deep image representations by inverting them, in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2015, 5188-5196.
doi: 10.1109/CVPR.2015.7299155.
|
[47]
|
A. Mahendran and A. Vedaldi, Visualizing deep convolutional neural networks using natural pre-images, International Journal of Computer Vision, 120 (2016), 233-255.
doi: 10.1007/s11263-016-0911-8.
|
[48]
|
M. Manassi, B. Sayim and M. H. Herzog, When crowding of crowding leads to uncrowding, Journal of Vision, 13 (2013), 10-10.
|
[49]
|
A. Mordvintsev, C. Olah and M. Tyka, Inceptionism: Going deeper into neural networks, Google Research Blog. Retrieved June, 20 (2015), 14pp.
|
[50]
|
A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox and J. Clune, Synthesizing the preferred inputs for neurons in neural networks via deep generator networks, in Proceedings of the Advances in Neural Information Processing Systems, 2016, 3387-3395.
|
[51]
|
A. Nguyen, J. Yosinski and J. Clune, Deep neural networks are easily fooled: High confidence predictions for unrecognizable images, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, 427-436.
doi: 10.1109/CVPR.2015.7298640.
|
[52]
|
A. Nguyen, J. Yosinski and J. Clune, Multifaceted feature visualization: Uncovering the different types of features learned by each neuron in deep neural networks, arXiv preprint, arXiv: 1602.03616.
|
[53]
|
S. J. Pan and Q. Yang, A survey on transfer learning, IEEE Transactions on Knowledge and Data Engineering, 22 (2010), 1345-1359.
doi: 10.1109/TKDE.2009.191.
|
[54]
|
M. I. Posner and S. E. Petersen, The attention system of the human brain, Annual Review of Neuroscience, 13 (1990), 25-42.
|
[55]
|
C. Poultney, S. Chopra, Y. L. Cun et al., Efficient learning of sparse representations with an energy-based model, in Proceedings of the Advances in Neural Information Processing Systems, 2007, 1137-1144.
|
[56]
|
N. Qian, On the momentum term in gradient descent learning algorithms, Neural Networks, 12 (1999), 145-151.
doi: 10.1016/S0893-6080(98)00116-6.
|
[57]
|
R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch and I. Fried., Invariant visual representation by single neurons in the human brain, Nature, 435 (2005), 1102-1107, URL http://dx.doi.org/10.1038/nature03687.
doi: 10.1038/nature03687.
|
[58]
|
S. Ren, K. He, R. Girshick and J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39 (2017), 1137-1149.
doi: 10.1109/TPAMI.2016.2577031.
|
[59]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[60]
|
H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura and R. M. Summers, Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning, IEEE Transactions on Medical Imaging, 35 (2016), 1285-1298.
doi: 10.1109/TMI.2016.2528162.
|
[61]
|
D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam and M. Lanctot, et al., Mastering the game of go with deep neural networks and tree search, Nature, 529 (2016), 484-489.
doi: 10.1038/nature16961.
|
[62]
|
K. Simonyan, A. Vedaldi and A. Zisserman, Deep inside convolutional networks: Visualising image classification models and saliency maps, arXiv preprint, arXiv: 1312.6034.
|
[63]
|
K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint, arXiv: 1409.1556.
|
[64]
|
J. Sivic and A. Zisserman, Video google: A text retrieval approach to object matching in videos, in Proceeding of Ninth IEEE International Conference on Computer Vision, 2003, 1470.
doi: 10.1109/ICCV.2003.1238663.
|
[65]
|
N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, Journal of Machine Learning Research, 15 (2014), 1929-1958.
|
[66]
|
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich, Going deeper with convolutions, in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2015, 1-9.
doi: 10.1109/CVPR.2015.7298594.
|
[67]
|
C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow and R. Fergus, Intriguing properties of neural networks, arXiv preprint, arXiv: 1312.6199.
|
[68]
|
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio and P.-A. Manzagol, Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, Journal of Machine Learning Research, 11 (2010), 3371-3408.
|
[69]
|
L. Wang, Y. Zhang and J. Feng, On the euclidean distance of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27 (2005), 1334-1339.
|
[70]
|
D. Wei, B. Zhou, A. Torrabla and W. Freeman, Understanding intra-class knowledge inside cnn, arXiv preprint, arXiv: 1507.02379.
|
[71]
|
J. Yosinski, J. Clune, A. Nguyen, T. Fuchs and H. Lipson, Understanding neural networks through deep visualization, arXiv preprint, arXiv: 1506.06579.
|
[72]
|
M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional networks, in Proceedings of the European Conference on Computer Vision, 2014, 818-833.
doi: 10.1007/978-3-319-10590-1_53.
|
[73]
|
M. D. Zeiler, D. Krishnan, G. W. Taylor and R. Fergus, Deconvolutional networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2010, 2528-2535.
doi: 10.1109/CVPR.2010.5539957.
|
[74]
|
M. D. Zeiler, G. W. Taylor and R. Fergus, Adaptive deconvolutional networks for mid and high level feature learning, in Proceedings of the IEEE International Conference on Computer Vision, 2011, 2018-2025.
doi: 10.1109/ICCV.2011.6126474.
|
[75]
|
B. Zhou, A. Khosla, A. Lapedriza, A. Oliva and A. Torralba, Object detectors emerge in deep scene CNNs, arXiv preprint, arXiv: 1412.6856.
|