August  2018, 1(3): 281-294. doi: 10.3934/mfc.2018013

Improve symmetry of arbiter in APUF

1. 

School of Computer & Communication Engineering, University of Science and Technology Beijing, Beijing 100086, China

2. 

School of Urban Rail Transportation, Soochow University, Suzhou 215006, China

* Corresponding author: Huansheng Ning

Received  December 2017 Revised  March 2018 Published  July 2018

Fund Project: The first author is supported by National Natural Science Foundation of China (61471035, 61774014).

Arbiter-based physical unclonable function (APUF) is a classical kind of physical unclonable function (PUF). In APUF-based device authentication, the fairness of traditional APUF is insufficient due to setup time of arbiter. To solve this problem, in this paper we design an arbiter and conduct Monte Carlo simulations to test the performance of the new arbiter. In addition, we present some new evaluation metrics to evaluate the new arbiter quantitatively. Finally, we certify that the new arbiter can work continuously with both one stage racing paths and eight stages racing paths. The new arbiter has good performance in correct rate, stability and fairness. Particularly, it mitigates the setup time problem by reducing the Asymmetry.

Citation: Yang Xu, Huansheng Ning, Lingfeng Mao, Youzhong Li, Lijun Zhang. Improve symmetry of arbiter in APUF. Mathematical Foundations of Computing, 2018, 1 (3) : 281-294. doi: 10.3934/mfc.2018013
References:
[1]

K. FruhashiM. ShiozakiA. FukushimaT. Murayama and T. Fujino, The arbiter-puf with high uniqueness utilizing novel arbiter circuit with delay-time measurement, International Symposium on Circuits and Systems, (2011), 2325-2328.  doi: 10.1109/ISCAS.2011.5938068.  Google Scholar

[2]

B. GassendD. ClarkeM. Van Dijk and S. Devadas, Silicon physical random functions, Proceedings of the 9th ACM Conference on Computer and Communications Security, (2002), 148-160.  doi: 10.1145/586110.586132.  Google Scholar

[3]

B. GassendD. ClarkeM. Van Dijk and S. Devadas, Delay-based circuit authentication and applications, Proceedings of the 2003 ACM Symposium on Applied Computing, (2003), 294-301.  doi: 10.1145/952532.952593.  Google Scholar

[4]

B. GassendD. LimD. ClarkeM. Van Dijk and S. Devadas, Identification and authentication of integrated circuits, Concurrency and Computation: Practice and Experience, 16 (2004), 1077-1098.  doi: 10.1002/cpe.805.  Google Scholar

[5]

B. Gassend, M. van Dijk, D. Clarke and S. Devadas, Controlled physical random functions, 18th Annual Computer Security Applications Conference, 2002. Proceedings, (2003). doi: 10.1109/CSAC.2002.1176287.  Google Scholar

[6]

P. F. HuH. S. NingT. QiuH. B. SongY. N. Wang and X. X. Yao, Security and privacy preservation scheme of face identification and resolution framework using fog computing in internet of things, IEEE Internet of Things Journal, 4 (2017), 1143-1155.  doi: 10.1109/JIOT.2017.2659783.  Google Scholar

[7]

J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. Van Dijk and S. Devadas, A technique to build a secret key in integrated circuits for identification and authentication applications, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No. 04CH37525), (2004). doi: 10.1109/VLSIC.2004.1346548.  Google Scholar

[8]

R. X. Li, Improvement of arbiter-based puf, Zhongguo Keji Lunwen Zaixian/ Sciencepaper Online, 6 (2011), 707-710.   Google Scholar

[9]

D. LimJ. W. LeeB. GassendG. E. SuhM. Van Dijk and S. Devadas, Extracting secret keys from integrated circuits, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 13 (2005), 1200-1205.  doi: 10.1109/TVLSI.2005.859470.  Google Scholar

[10]

K. Lofstrom, W. R. Daasch and D. Taylor, Ic identification circuit using device mismatch, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No. 00CH37056), (2000). doi: 10.1109/ISSCC.2000.839821.  Google Scholar

[11]

M. Majzoobi, F. Koushanfar and S. Devadas, Fpga puf using programmable delay lines, 2010 IEEE International Workshop on Information Forensics and Security, (2010). doi: 10.1109/WIFS.2010.5711471.  Google Scholar

[12]

R. PappuB. RechtJ. Taylor and N. Gershenfeld, Physical one-way functions, Science, 297 (2002), 2026-2030.  doi: 10.1126/science.1074376.  Google Scholar

[13]

R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo Method, Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2008. doi: 10.1002/9780470230381.  Google Scholar

[14]

G. E. Suh and S. Devada, Physical unclonable functions for device authentication and secret key generation, Proceedings of the 44th Annual Design Automation Conference, (2007), 9-14.  doi: 10.1145/1278480.1278484.  Google Scholar

[15]

J. Q. ZhangD. W. Gu and F. Y. Hou, Design and analysis of improved arbiter puf, Computer Engineering, 3 (2010), 86.   Google Scholar

[16]

J. L. ZhangG. QuY. Q. Lv and Q. Zhou, A survey on silicon pufs and recent advances in ring oscillator pufs, Journal of Computer Science and Technology, 29 (2014), 664-678.  doi: 10.1007/s11390-014-1458-1.  Google Scholar

show all references

References:
[1]

K. FruhashiM. ShiozakiA. FukushimaT. Murayama and T. Fujino, The arbiter-puf with high uniqueness utilizing novel arbiter circuit with delay-time measurement, International Symposium on Circuits and Systems, (2011), 2325-2328.  doi: 10.1109/ISCAS.2011.5938068.  Google Scholar

[2]

B. GassendD. ClarkeM. Van Dijk and S. Devadas, Silicon physical random functions, Proceedings of the 9th ACM Conference on Computer and Communications Security, (2002), 148-160.  doi: 10.1145/586110.586132.  Google Scholar

[3]

B. GassendD. ClarkeM. Van Dijk and S. Devadas, Delay-based circuit authentication and applications, Proceedings of the 2003 ACM Symposium on Applied Computing, (2003), 294-301.  doi: 10.1145/952532.952593.  Google Scholar

[4]

B. GassendD. LimD. ClarkeM. Van Dijk and S. Devadas, Identification and authentication of integrated circuits, Concurrency and Computation: Practice and Experience, 16 (2004), 1077-1098.  doi: 10.1002/cpe.805.  Google Scholar

[5]

B. Gassend, M. van Dijk, D. Clarke and S. Devadas, Controlled physical random functions, 18th Annual Computer Security Applications Conference, 2002. Proceedings, (2003). doi: 10.1109/CSAC.2002.1176287.  Google Scholar

[6]

P. F. HuH. S. NingT. QiuH. B. SongY. N. Wang and X. X. Yao, Security and privacy preservation scheme of face identification and resolution framework using fog computing in internet of things, IEEE Internet of Things Journal, 4 (2017), 1143-1155.  doi: 10.1109/JIOT.2017.2659783.  Google Scholar

[7]

J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. Van Dijk and S. Devadas, A technique to build a secret key in integrated circuits for identification and authentication applications, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No. 04CH37525), (2004). doi: 10.1109/VLSIC.2004.1346548.  Google Scholar

[8]

R. X. Li, Improvement of arbiter-based puf, Zhongguo Keji Lunwen Zaixian/ Sciencepaper Online, 6 (2011), 707-710.   Google Scholar

[9]

D. LimJ. W. LeeB. GassendG. E. SuhM. Van Dijk and S. Devadas, Extracting secret keys from integrated circuits, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 13 (2005), 1200-1205.  doi: 10.1109/TVLSI.2005.859470.  Google Scholar

[10]

K. Lofstrom, W. R. Daasch and D. Taylor, Ic identification circuit using device mismatch, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No. 00CH37056), (2000). doi: 10.1109/ISSCC.2000.839821.  Google Scholar

[11]

M. Majzoobi, F. Koushanfar and S. Devadas, Fpga puf using programmable delay lines, 2010 IEEE International Workshop on Information Forensics and Security, (2010). doi: 10.1109/WIFS.2010.5711471.  Google Scholar

[12]

R. PappuB. RechtJ. Taylor and N. Gershenfeld, Physical one-way functions, Science, 297 (2002), 2026-2030.  doi: 10.1126/science.1074376.  Google Scholar

[13]

R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo Method, Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2008. doi: 10.1002/9780470230381.  Google Scholar

[14]

G. E. Suh and S. Devada, Physical unclonable functions for device authentication and secret key generation, Proceedings of the 44th Annual Design Automation Conference, (2007), 9-14.  doi: 10.1145/1278480.1278484.  Google Scholar

[15]

J. Q. ZhangD. W. Gu and F. Y. Hou, Design and analysis of improved arbiter puf, Computer Engineering, 3 (2010), 86.   Google Scholar

[16]

J. L. ZhangG. QuY. Q. Lv and Q. Zhou, A survey on silicon pufs and recent advances in ring oscillator pufs, Journal of Computer Science and Technology, 29 (2014), 664-678.  doi: 10.1007/s11390-014-1458-1.  Google Scholar

Figure 1.  Delay difference
Figure 2.  Stage circuit
Figure 3.  The statistics and fitting result of 1 stage
Figure 4.  The 100 fitting curves of 8 stages
Figure 5.  Circuit of D latch arbiter
Figure 6.  Circuit of 2N arbiter
Figure 7.  Time series of 2N arbiter
Figure 8.  PA of an imaginary arbiter and PS of the corresponding arbitration strategy
Figure 9.  PA of a D latch arbiter and PS of the corresponding arbitration strategy
Figure 10.  PA of a 2N arbiter and PS of the corresponding arbitration strategy
Figure 11.  CRA of an imaginary arbiter CRA([ -0.05ns, 0.05ns]) = 0.8925
Figure 12.  CRA of a D latch arbiter CRA([-0.007ns, 0.007ns]) = 0.5000 CRA([-0.040ns, 0.040ns]) = 0.6260
Figure 13.  CRA of a 2N arbiter CRA([-0.007ns, 0.007ns]) = 0.9036 CRA([-0.040ns, 0.040ns]) = 0.9831
Figure 15.  Instability of a D latch arbiter Instability([-0.007ns, 0.007ns]) = 0.0000 Instability([-0.040ns, 0.040ns]) = 0.0286
Figure 16.  Instability of a 2N arbiter Instability([-0.007ns, 0.007ns]) = 0.1928 Instability([-0.040ns, 0.040ns]) = 0.0337
Figure 14.  Instability of an imaginary arbiter Instability([ -0.05ns, 0.05ns]) = 0.1942
Figure 17.  Asymmetry of an imaginary arbiter Asymmetry([0ns, 0.05ns]) = 0.0313
Figure 18.  Asymmetry of a D latch arbiter Asymmetry([0ns, 0.007ns]) = 1.0000 Asymmetry([0ns, 0.040ns]) = 0.7480
Figure 19.  Asymmetry of a 2N arbiter Asymmetry([0ns, 0.007ns]) = 0.0221 Asymmetry([0ns, 0.040ns]) = 0.0039
[1]

Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021001

[2]

Michal Beneš, Pavel Eichler, Jakub Klinkovský, Miroslav Kolář, Jakub Solovský, Pavel Strachota, Alexandr Žák. Numerical simulation of fluidization for application in oxyfuel combustion. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 769-783. doi: 10.3934/dcdss.2020232

[3]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Linhao Xu, Marya Claire Zdechlik, Melissa C. Smith, Min B. Rayamajhi, Don L. DeAngelis, Bo Zhang. Simulation of post-hurricane impact on invasive species with biological control management. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4059-4071. doi: 10.3934/dcds.2020038

[6]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[7]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[8]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[9]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[10]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[11]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021004

[12]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[13]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[14]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[15]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[16]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[17]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[18]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[19]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[20]

Madhurima Mukhopadhyay, Palash Sarkar, Shashank Singh, Emmanuel Thomé. New discrete logarithm computation for the medium prime case using the function field sieve. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020119

 Impact Factor: 

Metrics

  • PDF downloads (99)
  • HTML views (1441)
  • Cited by (0)

[Back to Top]