• PDF
• Cite
• Share
Article Contents  Article Contents

# Improve symmetry of arbiter in APUF

• * Corresponding author: Huansheng Ning
The first author is supported by National Natural Science Foundation of China (61471035, 61774014).
• Arbiter-based physical unclonable function (APUF) is a classical kind of physical unclonable function (PUF). In APUF-based device authentication, the fairness of traditional APUF is insufficient due to setup time of arbiter. To solve this problem, in this paper we design an arbiter and conduct Monte Carlo simulations to test the performance of the new arbiter. In addition, we present some new evaluation metrics to evaluate the new arbiter quantitatively. Finally, we certify that the new arbiter can work continuously with both one stage racing paths and eight stages racing paths. The new arbiter has good performance in correct rate, stability and fairness. Particularly, it mitigates the setup time problem by reducing the Asymmetry.

Mathematics Subject Classification: Primary: 94C99; Secondary: 62E25.

 Citation: • • Figure 1.  Delay difference

Figure 2.  Stage circuit

Figure 3.  The statistics and fitting result of 1 stage

Figure 4.  The 100 fitting curves of 8 stages

Figure 5.  Circuit of D latch arbiter

Figure 6.  Circuit of 2N arbiter

Figure 7.  Time series of 2N arbiter

Figure 8.  PA of an imaginary arbiter and PS of the corresponding arbitration strategy

Figure 9.  PA of a D latch arbiter and PS of the corresponding arbitration strategy

Figure 10.  PA of a 2N arbiter and PS of the corresponding arbitration strategy

Figure 11.  CRA of an imaginary arbiter CRA([ -0.05ns, 0.05ns]) = 0.8925

Figure 12.  CRA of a D latch arbiter CRA([-0.007ns, 0.007ns]) = 0.5000 CRA([-0.040ns, 0.040ns]) = 0.6260

Figure 13.  CRA of a 2N arbiter CRA([-0.007ns, 0.007ns]) = 0.9036 CRA([-0.040ns, 0.040ns]) = 0.9831

Figure 15.  Instability of a D latch arbiter Instability([-0.007ns, 0.007ns]) = 0.0000 Instability([-0.040ns, 0.040ns]) = 0.0286

Figure 16.  Instability of a 2N arbiter Instability([-0.007ns, 0.007ns]) = 0.1928 Instability([-0.040ns, 0.040ns]) = 0.0337

Figure 14.  Instability of an imaginary arbiter Instability([ -0.05ns, 0.05ns]) = 0.1942

Figure 17.  Asymmetry of an imaginary arbiter Asymmetry([0ns, 0.05ns]) = 0.0313

Figure 18.  Asymmetry of a D latch arbiter Asymmetry([0ns, 0.007ns]) = 1.0000 Asymmetry([0ns, 0.040ns]) = 0.7480

Figure 19.  Asymmetry of a 2N arbiter Asymmetry([0ns, 0.007ns]) = 0.0221 Asymmetry([0ns, 0.040ns]) = 0.0039

• ## Article Metrics  DownLoad:  Full-Size Img  PowerPoint