[1]
|
C. Ambroise and G. J. McLachlan, Selection bias in gene extraction on the basis of microarray gene-expression data, Proceedings of the National Academy of Sciences, 99 (2002), 6562-6566.
doi: 10.1073/pnas.102102699.
|
[2]
|
V. G. Ashok, K. Navuluri, A. Alhafdhi and R. Mukkamala, Dataless data mining: Association rules-based distributed privacy-preserving data mining, in Information Technology-New Generations (ITNG), 2015 12th International Conference on, IEEE, 2015, 615-620.
doi: 10.1109/ITNG.2015.102.
|
[3]
|
K. Bache and M. Lichman, Uci machine learning repository, http://archive.ics.uci.edu/ml, 2013.
|
[4]
|
K. Bache and M. Lichman, Uci machine learning repository, http://archive.ics.uci.edu/ml, 2013.
|
[5]
|
S. D. Bay, Combining nearest neighbor classifiers through multiple feature subsets. in ICML, 98 (1998), 37-45.
|
[6]
|
M. Bendechache and M.-T. Kechadi, Distributed clustering algorithm for spatial data mining, in Spatial Data Mining and Geographical Knowledge Services (ICSDM), 2015 2nd IEEE International Conference on. IEEE, 2015, 60-65.
|
[7]
|
L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. D. Jackel, Y. LeCun, U. A. Muller, E. Sackinger, P. Simard et al., Comparison of classifier methods: a case study in handwritten digit recognition, in Pattern Recognition, 1994. Vol. 2-Conference B: Computer Vision & Image Processing., Proceedings of the 12th IAPR International. Conference on, vol. 2. IEEE, 1994, 77-82.
|
[8]
|
Z. Cai, R. Goebel, M. R. Salavatipour, Y. Shi, L. Xu and G. Lin, Selecting genes with dissimilar discrimination strength for sample class prediction, in Proceedings Of The 5th Asia-Pacific Bioinformatics Conference, World Scientific, 2007, 81-90.
doi: 10.1142/9781860947995_0011.
|
[9]
|
P. S. Bradley and O. L. Mangasarian, Feature selection via concave minimization and support vector machines, in ICML, 98 (1998), 82-90.
|
[10]
|
C. J. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 2 (1998), 121-167.
|
[11]
|
Z. Cai, T. Zhang and X.-F Wan, A computational framework for influenza antigenic cartography, PLoS Computational Biology, 6 (2010), e1000949.
doi: 10.1371/journal.pcbi.1000949.
|
[12]
|
C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin and M. Y. Zhu, Tools for privacy preserving distributed data mining, ACM Sigkdd Explorations Newsletter, 4 (2002), 273-297.
doi: 10.1145/772862.772867.
|
[13]
|
C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, 20 (1995), 273-297.
doi: 10.1007/BF00994018.
|
[14]
|
P. Drineas and M. W. Mahoney, On the nyström method for approximating a gram matrix for improved kernel-based learning, journal of Machine Learning Research, 6 (2015), 2153-2175.
|
[15]
|
S. Dudoit, Y. H. Yang, M. J. Callow and T. P. Speed, Statistical methods for identifying differentially expressed genes in replicated cdna microarray experiments, Statistica Sinica, 12 (2002), 111-139.
|
[16]
|
R. A. Fisher, The use of multiple measurements in taxonomic problems, Annals of Eugenics, 7 (1936), 179-188.
doi: 10.1111/j.1469-1809.1936.tb02137.x.
|
[17]
|
Z. Cai and X. Zheng, A private and efficient mechanism for data uploading in smart cyber-physical systems, IEEE Transactions on Network Science and Engineering, (2018), 1-1.
doi: 10.1109/TNSE.2018.2830307.
|
[18]
|
V. Franc and S. Sonnenburg, et al., Optimized cutting plane algorithm for large-scale risk minimization, Journal of Machine Learning Research, 10 (2009), 2157-2192.
|
[19]
|
J. Friedman, Another Approach to Polychotomous Classification, Technical report, Department of Statistics, Stanford University, Tech. Rep., 1996.
|
[20]
|
C. Furlanello, M. Serafini, S. Merler and G. Jurman, et al., Entropy-based gene ranking without selection bias for the predictive classification of microarray data, BMC Bioinformatics, 4 (2003), 54.
|
[21]
|
M. Han, J. Li, Ji and Z. Cai, Q. Han, Privacy reserved influence maximization in gps-enabled cyber-physical and online social networks, in 2016 IEEE International Conferences on Social Computing and Networking (SocialCom), 2016, 284-292.
|
[22]
|
H. Albinali, M. Han, J. Wang, H. Gao, Y. Li, The roles of social network mavens, in 2016 12th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), 2016, 1-8.
|
[23]
|
T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri et al., Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, science, 286 (1999), 531-537.
doi: 10.1126/science.286.5439.531.
|
[24]
|
I. Guyon and A. Elisseeff, An introduction to variable and feature selection, Journal of Machine Learning Research, 3 (2003), 1157-1182.
|
[25]
|
I. Guyon, J. Weston, S. Barnhill and V. Vapnik, Gene selection for cancer classification using support vector machines, Machine Learning, 46 (2002), 389-422.
|
[26]
|
I. Kholod, M. Kuprianov and I. Petukhov, Distributed data mining based on actors for internet of things, in Embedded Computing (MECO), 2016 5th Mediterranean Conference on, IEEE, 2016, 480-484.
doi: 10.1109/MECO.2016.7525698.
|
[27]
|
S. Knerr, L. Personnaz and G. Dreyfus, Single-layer learning revisited: A stepwise procedure for building and training a neural network, in Neurocomputing, Springer, 68 (1990), 41-50.
doi: 10.1016/j.jcss.2003.06.002.
|
[28]
|
L. Liu, M. Han, Y. Zhou, Y. Wang, LSTM Recurrent Neural Networks for Influenza Trends Prediction, in International Symposium on Bioinformatics Research and Applications, 2018, 259-264.
|
[29]
|
Y. Lu, M. Yan, M. Han, Q. Yang, Y. Zhang, Privacy Preserving Multiclass Classification for Horizontally Distributed Data, in Proceedings of the 19th Annual SIG Conference on Information Technology Education, 2018, 165-165.
|
[30]
|
Y. Lindell and B. Pinkas, Privacy preserving data mining, Journal of Cryptology, 15 (2002), 177-206.
doi: 10.1007/s00145-001-0019-2.
|
[31]
|
M. Han, J. Wang, M. Yan, C. Ai, Z. Duan, Z. Hong, Near-complete privacy protection: cognitive optimal strategy in location-based services, in Procedia Computer Science, 129 (2018), 298-304.
|
[32]
|
A. Joshi, M. Han, Y. Wang, A survey on security and privacy issues of blockchain technology, in Mathematical Foundations of Computing, 1 (2018), 121-147.
|
[33]
|
Y. Lu, P. Phoungphol and Y. Zhang, Privacy aware non-linear support vector machine for multi-source big data, in Trust, Security and Privacy in Computing and Communications (TrustCom), 2014 IEEE 13th International Conference on, IEEE, 2014, 783-789.
doi: 10.1109/TrustCom.2014.103.
|
[34]
|
S. Maldonado, R. Weber and J. Basak, Simultaneous feature selection and classification using kernel-penalized support vector machines, Information Sciences, 181 (2011), 115-128.
doi: 10.1016/j.ins.2010.08.047.
|
[35]
|
J. Miao and L. Niu, A survey on feature selection, Procedia Computer Science, 91 (2016), 919-926.
doi: 10.1016/j.procs.2016.07.111.
|
[36]
|
J. Miranda, R. Montoya and R. Weber, Linear penalization support vector machines for feature selection, in International Conference on Pattern Recognition and Machine Intelligence. Springer, 2005, 188-192.
|
[37]
|
K. Parmar, D. Vaghela and P. Sharma, Performance prediction of students using distributed data mining, in Innovations in Information, Embedded and Communication Systems (ICIIECS), 2015 International Conference on, IEEE, 2015, 1-5.
|
[38]
|
I. Rish, An empirical study of the naive bayes classifier, in IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, 3 (2001), 41-46.
|
[39]
|
S. L. Salzberg, C4. 5: Programs for machine learning by j. ross quinlan. morgan kaufmann publishers, inc., 1993, Machine Learning, 16 (1994), 235-240.
|
[40]
|
A. Sharma, S. Imoto and S. Miyano, A top-r feature selection algorithm for microarray gene expression data, IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 9 (2012), 754-764.
|
[41]
|
Y. Shen, H. Shao and Y. Li, Research on the personalized privacy preserving distributed data mining, in Future Information Technology and Management Engineering, 2009. FITME'09. Second International Conference on. IEEE, 2009, 436-439.
doi: 10.1109/FITME.2009.115.
|
[42]
|
C.-A. Tsai, C.-H. Huang, C.-W. Chang and C.-H. Chen, Recursive feature selection with significant variables of support vectors, Computational and Mathematical Methods in Medicine, 2012 (2012), Art. ID 712542, 12 pp.
doi: 10.1155/2012/712542.
|
[43]
|
J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio and V. Vapnik, Feature selection for svms, in Advances in Neural Information Processing Systems, 2001, 668-674.
|
[44]
|
Z. Xu and X. Yi, Classification of privacy-preserving distributed data mining protocols, in Digital Information Management (ICDIM), 2011 Sixth International Conference on. IEEE, 2011, 337-342.
doi: 10.1109/ICDIM.2011.6093356.
|
[45]
|
K. Yang, Z. Cai, J. Li and G. Lin, A stable gene selection in microarray data analysis, BMC bioinformatics, 7 (2006), p228.
|
[46]
|
J. Ye and T. Xiong, Computational and theoretical analysis of null space and orthogonal linear discriminant analysis, Journal of Machine Learning Research, 7 (2006), 1183-1204.
|
[47]
|
L. Ying-hua, Y. Bing-ru, C. Dan-yang and M. Nan, State-of-the-art in distributed privacy preserving data mining, in Communication Software and Networks (ICCSN), 2011 IEEE 3rd International Conference on. IEEE, 2011, 545-549.
doi: 10.1109/ICCSN.2011.6014329.
|
[48]
|
K. Zhang, L. Lan, Z. Wang and F. Moerchen, Scaling up kernel svm on limited resources: A low-rank linearization approach, in Artificial Intelligence and Statistics, 2012, 1425-1434.
|
[49]
|
X. Zhang, X. Lu, Q. Shi, X.-q. Xu, E. L. Hon-chiu, N. Harris, J. D. Iglehart, A. Miron, J. S. Liu and W. H. Wong, Recursive svm feature selection and sample classification for mass-spectrometry and microarray data, BMC Bioinformatics, 7 (2006), p197.
|
[50]
|
F. Zhang, C. Rong, G. Zhao, J. Wu and X. Wu, Privacy-preserving two-party distributed association rules mining on horizontally partitioned data, in Cloud Computing and Big Data (CloudCom-Asia), 2013 International Conference on. IEEE, 2013, 633-640.
doi: 10.1109/CLOUDCOM-ASIA.2013.87.
|
[51]
|
K. Zhang, I. W. Tsang and J. T. Kwok, Improved nyström low-rank approximation and error analysis, in Proceedings of the 25th International Conference on Machine Learning, ACM, 2008, 1232-1239.
doi: 10.1145/1390156.1390311.
|
[52]
|
X. Zheng, Z. Cai and Y. Li, Data linkage in smart internet of things systems: A consideration from a privacy perspective, IEEE Communications Magazine, 56 (2018), 55-61.
doi: 10.1109/MCOM.2018.1701245.
|
[53]
|
Z. Zhu, Y.-S. Ong and M. Dash, Markov blanket-embedded genetic algorithm for gene selection, Pattern Recognition, 40 (2007), 3236-3248.
doi: 10.1016/j.patcog.2007.02.007.
|
[54]
|
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/, 2013.
|