February  2019, 2(1): 55-71. doi: 10.3934/mfc.2019005

Online optimization for residential PV-ESS energy system scheduling

1. 

1400 Washington Ave, Mathematics and Statistics Department, Albany, NY 12222, USA

2. 

251 Fuller Road, Atmospheric Sciences Research Center, Albany, NY 12203, USA

* Corresponding author: Yiming Ying

Published  March 2019

Fund Project: The second author is supported by NSF grant 1816227.

This paper studies a residential PV-ESS energy system scheduling problem with electricity purchase cost, storage degradation cost and surplus PV generated cost [2]. This problem can be viewed as an online optimization problem in time $ t \in [1, T] $ with switching costs between decision at $ t-1 $ and $ t $. We reformulate the problem into a single variable problem with $ {\bf{s}} = (s_1, ..., s_T)^T $, which denotes the storage energy content. We then propose a new algorithm, named Average Receding Horizon Control (ARHC) to solve the PV-ESS energy system scheduling problem. ARHC is an online control algorithm exploiting the prediction information with $ W $-steps look-ahead. We proved an upper bound on the dynamic regret for ARHC of order $ O(nT/W) $, where $ n $ is the dimension of decision space. This bound can be converted to a competitive ratio of order $ 1+O(1/W) $. This result overcomes the drawback of the classical algorithm Receding Horizon Control (RHC), which has been proved [11] that it may perform bad even with large look ahead $ W $. We also provide a lower bound for ARHC of order $ O(nT/W^2) $ on the dynamic regret. ARHC is then used to study a real world case in residential PV-ESS energy system scheduling.

Citation: Zhenhuan Yang, Yiming Ying, Qilong Min. Online optimization for residential PV-ESS energy system scheduling. Mathematical Foundations of Computing, 2019, 2 (1) : 55-71. doi: 10.3934/mfc.2019005
References:
[1]

L. Andrew and S. Barman and K. Ligett and M. Lin and A. Meyerson and A. Roytman and A. Wierman, A tale of two metrics: Simultaneous bounds on competitiveness and regret, SIGMETRICS '13 Proceedings of the ACM SIGMETRICS/International Conference on Measurement and Modeling of Computer Systems, 2015, 329-330, arXiv: 1508.03769. doi: 10.1145/2465529.2465533.  Google Scholar

[2]

A. Chis and J. Lunden and V. Koivunen, Coalitional game based cost optimization of energy portfolio in smart grid communities, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017. Google Scholar

[3]

O. BabacanE. L. RatnamV. R. Disfani and J. Kleissl, Distributed energy storage system scheduling considering tariff structure, energy arbitrage and solar PV penetration, Applied Energy, 205 (2017), 1384-1393.  doi: 10.1016/j.apenergy.2017.08.025.  Google Scholar

[4]

S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press New York, 2004. doi: 10.1017/CBO9780511804441.  Google Scholar

[5]

M. DubarryC. Truchot and B. Y. Liaw, Synthesize battery degradation modes via a diagnostic and prognostic model, Journal of Power Sources, 219 (2012), 204-216.  doi: 10.1016/j.jpowsour.2012.07.016.  Google Scholar

[6]

M. A. Epelman, Barrier Methods for Constrained Optimization, 2012. Available from: http://www-personal.umich.edu/ mepelman/teaching/NLP/Handouts/NLPnotes12_89.pdf. Google Scholar

[7]

C. Graves, New York Mandatory Hourly Pricing Program Case 03-E-0641, 2009. Available from: https://www.nyiso.com/documents/20142/1404435/PRLWG_MHP_Overview.pdf/0d12b88b-2921-23c5-4c0f-2edb1d16257a. Google Scholar

[8]

E. Hazan, Introduction to online convex optimization, Foundations and Trends in Optimization, 2 (2015), 157-325.  doi: 10.1561/2400000013.  Google Scholar

[9]

P. L. Joskow and C. D. Wolfram, Dynamic pricing of electricity, American Economic Review, 102 (2012), 381-385.  doi: 10.1257/aer.102.3.381.  Google Scholar

[10]

Y. Li, G. Qu and N. Li, Online optimization with predictions and switching costs: Fast algorithms and the fundamental limit, 2018 Annual American Control Conference (ACC), 2018, arXiv: 1801.07780. doi: 10.23919/ACC.2018.8431296.  Google Scholar

[11]

M. Lin, Z. Liu, A. Wierman and L. L. H. Andrew, Online Algorithms for Geographical Load Balancing, 2012 International Green Computing Conference (IGCC), 2012. doi: 10.1109/IGCC.2012.6322266.  Google Scholar

[12]

A. C. Luna, N. L. Diaz, M. Graells, J. C. Vasquez and J. M. Guerrero, Online energy management system for distributed generators in a grid-connected microgrid, 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015. doi: 10.1109/ECCE.2015.7310313.  Google Scholar

[13]

X. LuoJ. WangM. Dooner and J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation, Applied Energy, 137 (2015), 511-536.  doi: 10.1016/j.apenergy.2014.09.081.  Google Scholar

[14]

M. Morari and H. H. Lee, Model predictive control: Past, present and future, Computers and Chemical Engineering, 23 (1999), 667-682.  doi: 10.1016/S0098-1354(98)00301-9.  Google Scholar

[15]

National Grid, Hourly Electric Supply Charges, Available from: https://www9.nationalgridus.com/niagaramohawk/business/rates/5_hour_charge.asp. Google Scholar

[16]

National Solar Radiation Data Base, Hourly Solar Data, Available from: https://rredc.nrel.gov/solar/old_data/nsrdb/. Google Scholar

[17]

Office of Energy Efficiency & Renewable Energy (EERE), Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States, Available from: http://openei.org/datasets/dataset. Google Scholar

[18]

I. Prodan and E. Zio, A model predictive control framework for reliable microgrid energy management, International Journal of Electrical Power & Energy Systems, 61 (2014), 399-409.  doi: 10.1016/j.ijepes.2014.03.017.  Google Scholar

[19]

A. VaghefiM. A. JafariE. BisseY. Lu and J. Brouwer, Modeling and forecasting of cooling and electricity load demand, Applied Energy, 136 (2014), 186-196.  doi: 10.1016/j.apenergy.2014.09.004.  Google Scholar

[20]

C. VoyantG. NottonS. KalogirouM. L. NivetC. PaoliF. Motte and A. Fouilloy, Machine learning methods for solar radiation forecasting: A review, Renewable Energy, 105 (2017), 569-582.  doi: 10.1016/j.renene.2016.12.095.  Google Scholar

[21]

R. Weron, Electricity price forecasting: A review of the state-of-the-art with a look into the future, International Journal of Forecasting, 30 (2014), 1030-1081.  doi: 10.1016/j.ijforecast.2014.08.008.  Google Scholar

[22]

L. Xie and M. D. Llic, Model predictive dispatch in electric energy systems with intermittent resources, 2008 IEEE International Conference on Systems, Man and Cybernetics, 2008, 42-47. doi: 10.1109/ICSMC.2008.4811248.  Google Scholar

[23]

L. Yao, J. Y. Shen and W. H. Lim, Real-time energy management optimization for smart household, 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 2016. doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.31.  Google Scholar

[24]

Y. Yoon and Y. Kim, Charge Scheduling of an Energy Storage System under Time-of-Use Pricing and a Demand Charge, The Scientific World Journal, 2014 (2014), Article ID 937329, 9 pages. doi: 10.1155/2014/937329.  Google Scholar

show all references

References:
[1]

L. Andrew and S. Barman and K. Ligett and M. Lin and A. Meyerson and A. Roytman and A. Wierman, A tale of two metrics: Simultaneous bounds on competitiveness and regret, SIGMETRICS '13 Proceedings of the ACM SIGMETRICS/International Conference on Measurement and Modeling of Computer Systems, 2015, 329-330, arXiv: 1508.03769. doi: 10.1145/2465529.2465533.  Google Scholar

[2]

A. Chis and J. Lunden and V. Koivunen, Coalitional game based cost optimization of energy portfolio in smart grid communities, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017. Google Scholar

[3]

O. BabacanE. L. RatnamV. R. Disfani and J. Kleissl, Distributed energy storage system scheduling considering tariff structure, energy arbitrage and solar PV penetration, Applied Energy, 205 (2017), 1384-1393.  doi: 10.1016/j.apenergy.2017.08.025.  Google Scholar

[4]

S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press New York, 2004. doi: 10.1017/CBO9780511804441.  Google Scholar

[5]

M. DubarryC. Truchot and B. Y. Liaw, Synthesize battery degradation modes via a diagnostic and prognostic model, Journal of Power Sources, 219 (2012), 204-216.  doi: 10.1016/j.jpowsour.2012.07.016.  Google Scholar

[6]

M. A. Epelman, Barrier Methods for Constrained Optimization, 2012. Available from: http://www-personal.umich.edu/ mepelman/teaching/NLP/Handouts/NLPnotes12_89.pdf. Google Scholar

[7]

C. Graves, New York Mandatory Hourly Pricing Program Case 03-E-0641, 2009. Available from: https://www.nyiso.com/documents/20142/1404435/PRLWG_MHP_Overview.pdf/0d12b88b-2921-23c5-4c0f-2edb1d16257a. Google Scholar

[8]

E. Hazan, Introduction to online convex optimization, Foundations and Trends in Optimization, 2 (2015), 157-325.  doi: 10.1561/2400000013.  Google Scholar

[9]

P. L. Joskow and C. D. Wolfram, Dynamic pricing of electricity, American Economic Review, 102 (2012), 381-385.  doi: 10.1257/aer.102.3.381.  Google Scholar

[10]

Y. Li, G. Qu and N. Li, Online optimization with predictions and switching costs: Fast algorithms and the fundamental limit, 2018 Annual American Control Conference (ACC), 2018, arXiv: 1801.07780. doi: 10.23919/ACC.2018.8431296.  Google Scholar

[11]

M. Lin, Z. Liu, A. Wierman and L. L. H. Andrew, Online Algorithms for Geographical Load Balancing, 2012 International Green Computing Conference (IGCC), 2012. doi: 10.1109/IGCC.2012.6322266.  Google Scholar

[12]

A. C. Luna, N. L. Diaz, M. Graells, J. C. Vasquez and J. M. Guerrero, Online energy management system for distributed generators in a grid-connected microgrid, 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015. doi: 10.1109/ECCE.2015.7310313.  Google Scholar

[13]

X. LuoJ. WangM. Dooner and J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation, Applied Energy, 137 (2015), 511-536.  doi: 10.1016/j.apenergy.2014.09.081.  Google Scholar

[14]

M. Morari and H. H. Lee, Model predictive control: Past, present and future, Computers and Chemical Engineering, 23 (1999), 667-682.  doi: 10.1016/S0098-1354(98)00301-9.  Google Scholar

[15]

National Grid, Hourly Electric Supply Charges, Available from: https://www9.nationalgridus.com/niagaramohawk/business/rates/5_hour_charge.asp. Google Scholar

[16]

National Solar Radiation Data Base, Hourly Solar Data, Available from: https://rredc.nrel.gov/solar/old_data/nsrdb/. Google Scholar

[17]

Office of Energy Efficiency & Renewable Energy (EERE), Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States, Available from: http://openei.org/datasets/dataset. Google Scholar

[18]

I. Prodan and E. Zio, A model predictive control framework for reliable microgrid energy management, International Journal of Electrical Power & Energy Systems, 61 (2014), 399-409.  doi: 10.1016/j.ijepes.2014.03.017.  Google Scholar

[19]

A. VaghefiM. A. JafariE. BisseY. Lu and J. Brouwer, Modeling and forecasting of cooling and electricity load demand, Applied Energy, 136 (2014), 186-196.  doi: 10.1016/j.apenergy.2014.09.004.  Google Scholar

[20]

C. VoyantG. NottonS. KalogirouM. L. NivetC. PaoliF. Motte and A. Fouilloy, Machine learning methods for solar radiation forecasting: A review, Renewable Energy, 105 (2017), 569-582.  doi: 10.1016/j.renene.2016.12.095.  Google Scholar

[21]

R. Weron, Electricity price forecasting: A review of the state-of-the-art with a look into the future, International Journal of Forecasting, 30 (2014), 1030-1081.  doi: 10.1016/j.ijforecast.2014.08.008.  Google Scholar

[22]

L. Xie and M. D. Llic, Model predictive dispatch in electric energy systems with intermittent resources, 2008 IEEE International Conference on Systems, Man and Cybernetics, 2008, 42-47. doi: 10.1109/ICSMC.2008.4811248.  Google Scholar

[23]

L. Yao, J. Y. Shen and W. H. Lim, Real-time energy management optimization for smart household, 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 2016. doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.31.  Google Scholar

[24]

Y. Yoon and Y. Kim, Charge Scheduling of an Energy Storage System under Time-of-Use Pricing and a Demand Charge, The Scientific World Journal, 2014 (2014), Article ID 937329, 9 pages. doi: 10.1155/2014/937329.  Google Scholar

Figure 1.  48 hours experimental setup
Figure 2.  Performance of ARHC
Figure 3.  48 hours solution comparison of ARHC and offline optimal
Figure 4.  Storage size vs cost
[1]

Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021001

[2]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[3]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[4]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[5]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[6]

Junkee Jeon. Finite horizon portfolio selection problems with stochastic borrowing constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 733-763. doi: 10.3934/jimo.2019132

[7]

Min Ji, Xinna Ye, Fangyao Qian, T.C.E. Cheng, Yiwei Jiang. Parallel-machine scheduling in shared manufacturing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020174

[8]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[9]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[10]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[11]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[12]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[13]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[14]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[15]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[16]

Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49

[17]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[18]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[19]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[20]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

 Impact Factor: 

Metrics

  • PDF downloads (115)
  • HTML views (765)
  • Cited by (0)

Other articles
by authors

[Back to Top]