February  2019, 2(1): 55-71. doi: 10.3934/mfc.2019005

Online optimization for residential PV-ESS energy system scheduling

1. 

1400 Washington Ave, Mathematics and Statistics Department, Albany, NY 12222, USA

2. 

251 Fuller Road, Atmospheric Sciences Research Center, Albany, NY 12203, USA

* Corresponding author: Yiming Ying

Published  March 2019

Fund Project: The second author is supported by NSF grant 1816227

This paper studies a residential PV-ESS energy system scheduling problem with electricity purchase cost, storage degradation cost and surplus PV generated cost [2]. This problem can be viewed as an online optimization problem in time $ t \in [1, T] $ with switching costs between decision at $ t-1 $ and $ t $. We reformulate the problem into a single variable problem with $ {\bf{s}} = (s_1, ..., s_T)^T $, which denotes the storage energy content. We then propose a new algorithm, named Average Receding Horizon Control (ARHC) to solve the PV-ESS energy system scheduling problem. ARHC is an online control algorithm exploiting the prediction information with $ W $-steps look-ahead. We proved an upper bound on the dynamic regret for ARHC of order $ O(nT/W) $, where $ n $ is the dimension of decision space. This bound can be converted to a competitive ratio of order $ 1+O(1/W) $. This result overcomes the drawback of the classical algorithm Receding Horizon Control (RHC), which has been proved [11] that it may perform bad even with large look ahead $ W $. We also provide a lower bound for ARHC of order $ O(nT/W^2) $ on the dynamic regret. ARHC is then used to study a real world case in residential PV-ESS energy system scheduling.

Citation: Zhenhuan Yang, Yiming Ying, Qilong Min. Online optimization for residential PV-ESS energy system scheduling. Mathematical Foundations of Computing, 2019, 2 (1) : 55-71. doi: 10.3934/mfc.2019005
References:
[1]

L. Andrew and S. Barman and K. Ligett and M. Lin and A. Meyerson and A. Roytman and A. Wierman, A tale of two metrics: Simultaneous bounds on competitiveness and regret, SIGMETRICS '13 Proceedings of the ACM SIGMETRICS/International Conference on Measurement and Modeling of Computer Systems, 2015, 329-330, arXiv: 1508.03769. doi: 10.1145/2465529.2465533. Google Scholar

[2]

A. Chis and J. Lunden and V. Koivunen, Coalitional game based cost optimization of energy portfolio in smart grid communities, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017.Google Scholar

[3]

O. BabacanE. L. RatnamV. R. Disfani and J. Kleissl, Distributed energy storage system scheduling considering tariff structure, energy arbitrage and solar PV penetration, Applied Energy, 205 (2017), 1384-1393. doi: 10.1016/j.apenergy.2017.08.025. Google Scholar

[4]

S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press New York, 2004. doi: 10.1017/CBO9780511804441. Google Scholar

[5]

M. DubarryC. Truchot and B. Y. Liaw, Synthesize battery degradation modes via a diagnostic and prognostic model, Journal of Power Sources, 219 (2012), 204-216. doi: 10.1016/j.jpowsour.2012.07.016. Google Scholar

[6]

M. A. Epelman, Barrier Methods for Constrained Optimization, 2012. Available from: http://www-personal.umich.edu/ mepelman/teaching/NLP/Handouts/NLPnotes12_89.pdf.Google Scholar

[7]

C. Graves, New York Mandatory Hourly Pricing Program Case 03-E-0641, 2009. Available from: https://www.nyiso.com/documents/20142/1404435/PRLWG_MHP_Overview.pdf/0d12b88b-2921-23c5-4c0f-2edb1d16257a.Google Scholar

[8]

E. Hazan, Introduction to online convex optimization, Foundations and Trends in Optimization, 2 (2015), 157-325. doi: 10.1561/2400000013. Google Scholar

[9]

P. L. Joskow and C. D. Wolfram, Dynamic pricing of electricity, American Economic Review, 102 (2012), 381-385. doi: 10.1257/aer.102.3.381. Google Scholar

[10]

Y. Li, G. Qu and N. Li, Online optimization with predictions and switching costs: Fast algorithms and the fundamental limit, 2018 Annual American Control Conference (ACC), 2018, arXiv: 1801.07780. doi: 10.23919/ACC.2018.8431296. Google Scholar

[11]

M. Lin, Z. Liu, A. Wierman and L. L. H. Andrew, Online Algorithms for Geographical Load Balancing, 2012 International Green Computing Conference (IGCC), 2012. doi: 10.1109/IGCC.2012.6322266. Google Scholar

[12]

A. C. Luna, N. L. Diaz, M. Graells, J. C. Vasquez and J. M. Guerrero, Online energy management system for distributed generators in a grid-connected microgrid, 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015. doi: 10.1109/ECCE.2015.7310313. Google Scholar

[13]

X. LuoJ. WangM. Dooner and J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation, Applied Energy, 137 (2015), 511-536. doi: 10.1016/j.apenergy.2014.09.081. Google Scholar

[14]

M. Morari and H. H. Lee, Model predictive control: Past, present and future, Computers and Chemical Engineering, 23 (1999), 667-682. doi: 10.1016/S0098-1354(98)00301-9. Google Scholar

[15]

National Grid, Hourly Electric Supply Charges, Available from: https://www9.nationalgridus.com/niagaramohawk/business/rates/5_hour_charge.asp.Google Scholar

[16]

National Solar Radiation Data Base, Hourly Solar Data, Available from: https://rredc.nrel.gov/solar/old_data/nsrdb/.Google Scholar

[17]

Office of Energy Efficiency & Renewable Energy (EERE), Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States, Available from: http://openei.org/datasets/dataset.Google Scholar

[18]

I. Prodan and E. Zio, A model predictive control framework for reliable microgrid energy management, International Journal of Electrical Power & Energy Systems, 61 (2014), 399-409. doi: 10.1016/j.ijepes.2014.03.017. Google Scholar

[19]

A. VaghefiM. A. JafariE. BisseY. Lu and J. Brouwer, Modeling and forecasting of cooling and electricity load demand, Applied Energy, 136 (2014), 186-196. doi: 10.1016/j.apenergy.2014.09.004. Google Scholar

[20]

C. VoyantG. NottonS. KalogirouM. L. NivetC. PaoliF. Motte and A. Fouilloy, Machine learning methods for solar radiation forecasting: A review, Renewable Energy, 105 (2017), 569-582. doi: 10.1016/j.renene.2016.12.095. Google Scholar

[21]

R. Weron, Electricity price forecasting: A review of the state-of-the-art with a look into the future, International Journal of Forecasting, 30 (2014), 1030-1081. doi: 10.1016/j.ijforecast.2014.08.008. Google Scholar

[22]

L. Xie and M. D. Llic, Model predictive dispatch in electric energy systems with intermittent resources, 2008 IEEE International Conference on Systems, Man and Cybernetics, 2008, 42-47. doi: 10.1109/ICSMC.2008.4811248. Google Scholar

[23]

L. Yao, J. Y. Shen and W. H. Lim, Real-time energy management optimization for smart household, 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 2016. doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.31. Google Scholar

[24]

Y. Yoon and Y. Kim, Charge Scheduling of an Energy Storage System under Time-of-Use Pricing and a Demand Charge, The Scientific World Journal, 2014 (2014), Article ID 937329, 9 pages. doi: 10.1155/2014/937329. Google Scholar

show all references

References:
[1]

L. Andrew and S. Barman and K. Ligett and M. Lin and A. Meyerson and A. Roytman and A. Wierman, A tale of two metrics: Simultaneous bounds on competitiveness and regret, SIGMETRICS '13 Proceedings of the ACM SIGMETRICS/International Conference on Measurement and Modeling of Computer Systems, 2015, 329-330, arXiv: 1508.03769. doi: 10.1145/2465529.2465533. Google Scholar

[2]

A. Chis and J. Lunden and V. Koivunen, Coalitional game based cost optimization of energy portfolio in smart grid communities, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017.Google Scholar

[3]

O. BabacanE. L. RatnamV. R. Disfani and J. Kleissl, Distributed energy storage system scheduling considering tariff structure, energy arbitrage and solar PV penetration, Applied Energy, 205 (2017), 1384-1393. doi: 10.1016/j.apenergy.2017.08.025. Google Scholar

[4]

S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press New York, 2004. doi: 10.1017/CBO9780511804441. Google Scholar

[5]

M. DubarryC. Truchot and B. Y. Liaw, Synthesize battery degradation modes via a diagnostic and prognostic model, Journal of Power Sources, 219 (2012), 204-216. doi: 10.1016/j.jpowsour.2012.07.016. Google Scholar

[6]

M. A. Epelman, Barrier Methods for Constrained Optimization, 2012. Available from: http://www-personal.umich.edu/ mepelman/teaching/NLP/Handouts/NLPnotes12_89.pdf.Google Scholar

[7]

C. Graves, New York Mandatory Hourly Pricing Program Case 03-E-0641, 2009. Available from: https://www.nyiso.com/documents/20142/1404435/PRLWG_MHP_Overview.pdf/0d12b88b-2921-23c5-4c0f-2edb1d16257a.Google Scholar

[8]

E. Hazan, Introduction to online convex optimization, Foundations and Trends in Optimization, 2 (2015), 157-325. doi: 10.1561/2400000013. Google Scholar

[9]

P. L. Joskow and C. D. Wolfram, Dynamic pricing of electricity, American Economic Review, 102 (2012), 381-385. doi: 10.1257/aer.102.3.381. Google Scholar

[10]

Y. Li, G. Qu and N. Li, Online optimization with predictions and switching costs: Fast algorithms and the fundamental limit, 2018 Annual American Control Conference (ACC), 2018, arXiv: 1801.07780. doi: 10.23919/ACC.2018.8431296. Google Scholar

[11]

M. Lin, Z. Liu, A. Wierman and L. L. H. Andrew, Online Algorithms for Geographical Load Balancing, 2012 International Green Computing Conference (IGCC), 2012. doi: 10.1109/IGCC.2012.6322266. Google Scholar

[12]

A. C. Luna, N. L. Diaz, M. Graells, J. C. Vasquez and J. M. Guerrero, Online energy management system for distributed generators in a grid-connected microgrid, 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015. doi: 10.1109/ECCE.2015.7310313. Google Scholar

[13]

X. LuoJ. WangM. Dooner and J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation, Applied Energy, 137 (2015), 511-536. doi: 10.1016/j.apenergy.2014.09.081. Google Scholar

[14]

M. Morari and H. H. Lee, Model predictive control: Past, present and future, Computers and Chemical Engineering, 23 (1999), 667-682. doi: 10.1016/S0098-1354(98)00301-9. Google Scholar

[15]

National Grid, Hourly Electric Supply Charges, Available from: https://www9.nationalgridus.com/niagaramohawk/business/rates/5_hour_charge.asp.Google Scholar

[16]

National Solar Radiation Data Base, Hourly Solar Data, Available from: https://rredc.nrel.gov/solar/old_data/nsrdb/.Google Scholar

[17]

Office of Energy Efficiency & Renewable Energy (EERE), Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States, Available from: http://openei.org/datasets/dataset.Google Scholar

[18]

I. Prodan and E. Zio, A model predictive control framework for reliable microgrid energy management, International Journal of Electrical Power & Energy Systems, 61 (2014), 399-409. doi: 10.1016/j.ijepes.2014.03.017. Google Scholar

[19]

A. VaghefiM. A. JafariE. BisseY. Lu and J. Brouwer, Modeling and forecasting of cooling and electricity load demand, Applied Energy, 136 (2014), 186-196. doi: 10.1016/j.apenergy.2014.09.004. Google Scholar

[20]

C. VoyantG. NottonS. KalogirouM. L. NivetC. PaoliF. Motte and A. Fouilloy, Machine learning methods for solar radiation forecasting: A review, Renewable Energy, 105 (2017), 569-582. doi: 10.1016/j.renene.2016.12.095. Google Scholar

[21]

R. Weron, Electricity price forecasting: A review of the state-of-the-art with a look into the future, International Journal of Forecasting, 30 (2014), 1030-1081. doi: 10.1016/j.ijforecast.2014.08.008. Google Scholar

[22]

L. Xie and M. D. Llic, Model predictive dispatch in electric energy systems with intermittent resources, 2008 IEEE International Conference on Systems, Man and Cybernetics, 2008, 42-47. doi: 10.1109/ICSMC.2008.4811248. Google Scholar

[23]

L. Yao, J. Y. Shen and W. H. Lim, Real-time energy management optimization for smart household, 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 2016. doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.31. Google Scholar

[24]

Y. Yoon and Y. Kim, Charge Scheduling of an Energy Storage System under Time-of-Use Pricing and a Demand Charge, The Scientific World Journal, 2014 (2014), Article ID 937329, 9 pages. doi: 10.1155/2014/937329. Google Scholar

Figure 1.  48 hours experimental setup
Figure 2.  Performance of ARHC
Figure 3.  48 hours solution comparison of ARHC and offline optimal
Figure 4.  Storage size vs cost
[1]

Behzad Azmi, Karl Kunisch. Receding horizon control for the stabilization of the wave equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 449-484. doi: 10.3934/dcds.2018021

[2]

Fabio Bagagiolo. Optimal control of finite horizon type for a multidimensional delayed switching system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 239-264. doi: 10.3934/dcdsb.2005.5.239

[3]

Fabio Bagagiolo. An infinite horizon optimal control problem for some switching systems. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 443-462. doi: 10.3934/dcdsb.2001.1.443

[4]

Wei Xu, Liying Yu, Gui-Hua Lin, Zhi Guo Feng. Optimal switching signal design with a cost on switching action. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019068

[5]

Jiping Tao, Ronghuan Huang, Tundong Liu. A $2.28$-competitive algorithm for online scheduling on identical machines. Journal of Industrial & Management Optimization, 2015, 11 (1) : 185-198. doi: 10.3934/jimo.2015.11.185

[6]

Donglei Du, Tianping Shuai. Errata to:''Optimal preemptive online scheduling to minimize $l_{p}$ norm on two processors''[Journal of Industrial and Management Optimization, 1(3) (2005), 345-351.]. Journal of Industrial & Management Optimization, 2008, 4 (2) : 339-341. doi: 10.3934/jimo.2008.4.339

[7]

Weidong Bao, Wenhua Xiao, Haoran Ji, Chao Chen, Xiaomin Zhu, Jianhong Wu. Towards big data processing in clouds: An online cost-minimization approach. Big Data & Information Analytics, 2016, 1 (1) : 15-29. doi: 10.3934/bdia.2016.1.15

[8]

Tao Pang, Azmat Hussain. An infinite time horizon portfolio optimization model with delays. Mathematical Control & Related Fields, 2016, 6 (4) : 629-651. doi: 10.3934/mcrf.2016018

[9]

Joon Kwon, Panayotis Mertikopoulos. A continuous-time approach to online optimization. Journal of Dynamics & Games, 2017, 4 (2) : 125-148. doi: 10.3934/jdg.2017008

[10]

P. Liu, Xiwen Lu. Online scheduling of two uniform machines to minimize total completion times. Journal of Industrial & Management Optimization, 2009, 5 (1) : 95-102. doi: 10.3934/jimo.2009.5.95

[11]

Donglei Du, Xiaoyue Jiang, Guochuan Zhang. Optimal preemptive online scheduling to minimize lp norm on two processors. Journal of Industrial & Management Optimization, 2005, 1 (3) : 345-351. doi: 10.3934/jimo.2005.1.345

[12]

Lihui Zhang, Xin Zou, Jianxun Qi. A trade-off between time and cost in scheduling repetitive construction projects. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1423-1434. doi: 10.3934/jimo.2015.11.1423

[13]

Lars Grüne, Marleen Stieler. Multiobjective model predictive control for stabilizing cost criteria. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3905-3928. doi: 10.3934/dcdsb.2018336

[14]

Jiping Tao, Zhijun Chao, Yugeng Xi. A semi-online algorithm and its competitive analysis for a single machine scheduling problem with bounded processing times. Journal of Industrial & Management Optimization, 2010, 6 (2) : 269-282. doi: 10.3934/jimo.2010.6.269

[15]

Ran Ma, Jiping Tao. An improved 2.11-competitive algorithm for online scheduling on parallel machines to minimize total weighted completion time. Journal of Industrial & Management Optimization, 2018, 14 (2) : 497-510. doi: 10.3934/jimo.2017057

[16]

Naïla Hayek. Infinite-horizon multiobjective optimal control problems for bounded processes. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1121-1141. doi: 10.3934/dcdss.2018064

[17]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[18]

Luca Schenato, Sandro Zampieri. On rendezvous control with randomly switching communication graphs. Networks & Heterogeneous Media, 2007, 2 (4) : 627-646. doi: 10.3934/nhm.2007.2.627

[19]

Thomas I. Seidman. Optimal control of a diffusion/reaction/switching system. Evolution Equations & Control Theory, 2013, 2 (4) : 723-731. doi: 10.3934/eect.2013.2.723

[20]

Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47

 Impact Factor: 

Metrics

  • PDF downloads (28)
  • HTML views (339)
  • Cited by (0)

Other articles
by authors

[Back to Top]