May  2019, 2(2): 83-93. doi: 10.3934/mfc.2019007

"Reducing the number of dimensions of the possible solution space" as a method for finding the exact solution of a system with a large number of unknowns

1. 

Stevana Mokranjca 6, 12000 Požarevac, Serbia

2. 

Visoka Tehnička škola strukovnih studija, Njegoseva 2, 12000 Požarevac, Serbia

* Corresponding author: Aleksa Srdanov

Received  February 2019 Revised  March 2019 Published  May 2019

Solving linear systems with a relatively large number of equationsand unknowns can be achieved using an approximate method to obtain a solution with specified accuracy within numerical mathematics. Obtaining theexact solution using the computer today is only possible within the frameworkof symbolic mathematics. It is possible to define an algorithm that does notsolve the system of equations in the usual mathematical way, but still findsits exact solution in the exact number of steps already defined. The methodconsists of simple computations that are not cumulative. At the same time,the number of operations is acceptable even for a relatively large number ofequations and unknowns. In addition, the algorithm allows the process to startfrom an arbitrary initial n-tuple and always leads to the exact solution if itexists.

Citation: Aleksa Srdanov, Radiša Stefanović, Aleksandra Janković, Dragan Milovanović. "Reducing the number of dimensions of the possible solution space" as a method for finding the exact solution of a system with a large number of unknowns. Mathematical Foundations of Computing, 2019, 2 (2) : 83-93. doi: 10.3934/mfc.2019007
References:
[1]

Z. Bohte, Numerične Metode, (Slevenian), Državna založba Slovenije, Ljubljana, 1978.  Google Scholar

[2]

N. Higham, Accuracy and Stability of Numerical Algorithms, 2002. 2nd ed. Society for Industrial and Applied Mathematics, 3600 University City Science Center, Philadelphia, PA 19104-2688. doi: 10.1137/1.9780898718027.  Google Scholar

[3]

D. A. Randall, An Introduction to Numerical Modeling of the Atmosphere, 2015, Chapter 6, Colorado State Univesity. Google Scholar

[4]

A. Srdanov, The universal formulas for the number of partitions, Proc. Indian Acad. Sci. Math. Sci., 128 (2018), Art. 40, 17 pp. doi: 10.1007/s12044-018-0418-z.  Google Scholar

[5]

A. Srdanov and R. Stefanović, How to solve a system of linear equations with extremely many unknown, (Serbian), 16th International Symposium INFOTEH-Jahorina, 16 (2017), 593–596, Available from: https://www.infoteh.rs.ba/zbornik/2017/radovi/RSS-2/RSS-2-12.pdf Google Scholar

[6]

A. SrdanovR. StefanovićN. Ratković KovačevićA. Jovanović and D. Milovanović, The method of external spiral for solving large system of linear equations, Military Technical Courier, 66 (2018), 391-414.  doi: 10.5937/vojtehg66-14625.  Google Scholar

[7]

A. Srdanov, R. Stefanović, N. Ratković Kovačević, A. Jovanović, D. Milovanović and D. Marjanović, Method of trihedrals for finding the exact solution of a linear system with a large number of unknowns, (Serbian), 17th International Symposium INFOTEH-Jahorina, (2018), 388–392, Available from: https://www.infoteh.rs.ba/zbornik/2018/radovi/RSS-3/RSS-3-1.pdf Google Scholar

[8]

J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Texts in Applied Mathematics, (Third edition. Texts in Applied Mathematics, 12. Springer-Verlag, New York, 2002. doi: 10.1007/978-0-387-21738-3.  Google Scholar

show all references

References:
[1]

Z. Bohte, Numerične Metode, (Slevenian), Državna založba Slovenije, Ljubljana, 1978.  Google Scholar

[2]

N. Higham, Accuracy and Stability of Numerical Algorithms, 2002. 2nd ed. Society for Industrial and Applied Mathematics, 3600 University City Science Center, Philadelphia, PA 19104-2688. doi: 10.1137/1.9780898718027.  Google Scholar

[3]

D. A. Randall, An Introduction to Numerical Modeling of the Atmosphere, 2015, Chapter 6, Colorado State Univesity. Google Scholar

[4]

A. Srdanov, The universal formulas for the number of partitions, Proc. Indian Acad. Sci. Math. Sci., 128 (2018), Art. 40, 17 pp. doi: 10.1007/s12044-018-0418-z.  Google Scholar

[5]

A. Srdanov and R. Stefanović, How to solve a system of linear equations with extremely many unknown, (Serbian), 16th International Symposium INFOTEH-Jahorina, 16 (2017), 593–596, Available from: https://www.infoteh.rs.ba/zbornik/2017/radovi/RSS-2/RSS-2-12.pdf Google Scholar

[6]

A. SrdanovR. StefanovićN. Ratković KovačevićA. Jovanović and D. Milovanović, The method of external spiral for solving large system of linear equations, Military Technical Courier, 66 (2018), 391-414.  doi: 10.5937/vojtehg66-14625.  Google Scholar

[7]

A. Srdanov, R. Stefanović, N. Ratković Kovačević, A. Jovanović, D. Milovanović and D. Marjanović, Method of trihedrals for finding the exact solution of a linear system with a large number of unknowns, (Serbian), 17th International Symposium INFOTEH-Jahorina, (2018), 388–392, Available from: https://www.infoteh.rs.ba/zbornik/2018/radovi/RSS-3/RSS-3-1.pdf Google Scholar

[8]

J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Texts in Applied Mathematics, (Third edition. Texts in Applied Mathematics, 12. Springer-Verlag, New York, 2002. doi: 10.1007/978-0-387-21738-3.  Google Scholar

[1]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[2]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[3]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[4]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[5]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[6]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[7]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[8]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[9]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[10]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[11]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[12]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[13]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[14]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[15]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[16]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[17]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[18]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[19]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[20]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

 Impact Factor: 

Metrics

  • PDF downloads (116)
  • HTML views (735)
  • Cited by (2)

[Back to Top]