May  2019, 2(2): 83-93. doi: 10.3934/mfc.2019007

"Reducing the number of dimensions of the possible solution space" as a method for finding the exact solution of a system with a large number of unknowns

1. 

Stevana Mokranjca 6, 12000 Požarevac, Serbia

2. 

Visoka Tehnička škola strukovnih studija, Njegoseva 2, 12000 Požarevac, Serbia

* Corresponding author: Aleksa Srdanov

Received  February 2019 Revised  March 2019 Published  May 2019

Solving linear systems with a relatively large number of equationsand unknowns can be achieved using an approximate method to obtain a solution with specified accuracy within numerical mathematics. Obtaining theexact solution using the computer today is only possible within the frameworkof symbolic mathematics. It is possible to define an algorithm that does notsolve the system of equations in the usual mathematical way, but still findsits exact solution in the exact number of steps already defined. The methodconsists of simple computations that are not cumulative. At the same time,the number of operations is acceptable even for a relatively large number ofequations and unknowns. In addition, the algorithm allows the process to startfrom an arbitrary initial n-tuple and always leads to the exact solution if itexists.

Citation: Aleksa Srdanov, Radiša Stefanović, Aleksandra Janković, Dragan Milovanović. "Reducing the number of dimensions of the possible solution space" as a method for finding the exact solution of a system with a large number of unknowns. Mathematical Foundations of Computing, 2019, 2 (2) : 83-93. doi: 10.3934/mfc.2019007
References:
[1]

Z. Bohte, Numerične Metode, (Slevenian), Državna založba Slovenije, Ljubljana, 1978.  Google Scholar

[2]

N. Higham, Accuracy and Stability of Numerical Algorithms, 2002. 2nd ed. Society for Industrial and Applied Mathematics, 3600 University City Science Center, Philadelphia, PA 19104-2688. doi: 10.1137/1.9780898718027.  Google Scholar

[3]

D. A. Randall, An Introduction to Numerical Modeling of the Atmosphere, 2015, Chapter 6, Colorado State Univesity. Google Scholar

[4]

A. Srdanov, The universal formulas for the number of partitions, Proc. Indian Acad. Sci. Math. Sci., 128 (2018), Art. 40, 17 pp. doi: 10.1007/s12044-018-0418-z.  Google Scholar

[5]

A. Srdanov and R. Stefanović, How to solve a system of linear equations with extremely many unknown, (Serbian), 16th International Symposium INFOTEH-Jahorina, 16 (2017), 593–596, Available from: https://www.infoteh.rs.ba/zbornik/2017/radovi/RSS-2/RSS-2-12.pdf Google Scholar

[6]

A. SrdanovR. StefanovićN. Ratković KovačevićA. Jovanović and D. Milovanović, The method of external spiral for solving large system of linear equations, Military Technical Courier, 66 (2018), 391-414.  doi: 10.5937/vojtehg66-14625.  Google Scholar

[7]

A. Srdanov, R. Stefanović, N. Ratković Kovačević, A. Jovanović, D. Milovanović and D. Marjanović, Method of trihedrals for finding the exact solution of a linear system with a large number of unknowns, (Serbian), 17th International Symposium INFOTEH-Jahorina, (2018), 388–392, Available from: https://www.infoteh.rs.ba/zbornik/2018/radovi/RSS-3/RSS-3-1.pdf Google Scholar

[8]

J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Texts in Applied Mathematics, (Third edition. Texts in Applied Mathematics, 12. Springer-Verlag, New York, 2002. doi: 10.1007/978-0-387-21738-3.  Google Scholar

show all references

References:
[1]

Z. Bohte, Numerične Metode, (Slevenian), Državna založba Slovenije, Ljubljana, 1978.  Google Scholar

[2]

N. Higham, Accuracy and Stability of Numerical Algorithms, 2002. 2nd ed. Society for Industrial and Applied Mathematics, 3600 University City Science Center, Philadelphia, PA 19104-2688. doi: 10.1137/1.9780898718027.  Google Scholar

[3]

D. A. Randall, An Introduction to Numerical Modeling of the Atmosphere, 2015, Chapter 6, Colorado State Univesity. Google Scholar

[4]

A. Srdanov, The universal formulas for the number of partitions, Proc. Indian Acad. Sci. Math. Sci., 128 (2018), Art. 40, 17 pp. doi: 10.1007/s12044-018-0418-z.  Google Scholar

[5]

A. Srdanov and R. Stefanović, How to solve a system of linear equations with extremely many unknown, (Serbian), 16th International Symposium INFOTEH-Jahorina, 16 (2017), 593–596, Available from: https://www.infoteh.rs.ba/zbornik/2017/radovi/RSS-2/RSS-2-12.pdf Google Scholar

[6]

A. SrdanovR. StefanovićN. Ratković KovačevićA. Jovanović and D. Milovanović, The method of external spiral for solving large system of linear equations, Military Technical Courier, 66 (2018), 391-414.  doi: 10.5937/vojtehg66-14625.  Google Scholar

[7]

A. Srdanov, R. Stefanović, N. Ratković Kovačević, A. Jovanović, D. Milovanović and D. Marjanović, Method of trihedrals for finding the exact solution of a linear system with a large number of unknowns, (Serbian), 17th International Symposium INFOTEH-Jahorina, (2018), 388–392, Available from: https://www.infoteh.rs.ba/zbornik/2018/radovi/RSS-3/RSS-3-1.pdf Google Scholar

[8]

J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Texts in Applied Mathematics, (Third edition. Texts in Applied Mathematics, 12. Springer-Verlag, New York, 2002. doi: 10.1007/978-0-387-21738-3.  Google Scholar

[1]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[2]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[3]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[4]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[5]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[6]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[7]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[8]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[9]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[10]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[11]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[12]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[13]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[14]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[15]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[16]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[17]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[18]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[19]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[20]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

 Impact Factor: 

Metrics

  • PDF downloads (101)
  • HTML views (633)
  • Cited by (2)

[Back to Top]