[1]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via alternating direction method of multipliers, Foundations and Trends® in Machine Learning, 3 (2011), 1-122.
doi: 10.1561/2200000016.
|
[2]
|
J. Cai, E. Cand$\grave{e}$s and Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM Journal on Optimization, 20 (2010), 1956-1982.
doi: 10.1137/080738970.
|
[3]
|
X. Chen, M. Ng and C. Zhang, Non-lipschitz $\ell_p$-regularization and box constrained model for image restoration, IEEE Transactions on Image Processing, 21 (2012), 4709-4721.
doi: 10.1109/TIP.2012.2214051.
|
[4]
|
Y. Chen, N. Xiu and D. Peng, Global solutions of non-Lipschitz $S_2-S_ p$ minimization over the positive semidefinite cone, Optimization Letters, 8 (2014), 2053-2064.
doi: 10.1007/s11590-013-0701-y.
|
[5]
|
D. Donoho, De-noising by soft-thresholding, IEEE Transactions on Information Theory, 41 (1995), 613-627.
doi: 10.1109/18.382009.
|
[6]
|
M. Elad, Why simple shrinkage is still relevant for redundant representations?, IEEE Transactions on Information Theory, 52 (2006), 5559-5569.
doi: 10.1109/TIT.2006.885522.
|
[7]
|
J. Fan, Comments on "wavelets in statistics: A review" by A. Antoniadis, Journal of the Italian Statistical Society, 6 (1997), 131-138.
doi: 10.1007/BF03178906.
|
[8]
|
J. Fan and R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96 (2001), 1348-1360.
doi: 10.1198/016214501753382273.
|
[9]
|
J. Fan, L. Xue and H. Zou, Strong oracle optimality of folded concave penalized estimation, Annals of Statistics, 42 (2014), 819-849.
doi: 10.1214/13-AOS1198.
|
[10]
|
M. Fazel, T. Pong, D. Sun and P. Tseng, Hankel matrix rank minimization with applications to system identification and realization, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 946-977.
doi: 10.1137/110853996.
|
[11]
|
D. Gabay, Chapter ix applications of the method of multipliers to variational inequalities, Studies in Mathematics and Its Applications, 15 (1983), 299-331.
doi: 10.1016/S0168-2024(08)70034-1.
|
[12]
|
D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Computers and Mathematics with Applications, 2 (1976), 17-40.
doi: 10.1016/0898-1221(76)90003-1.
|
[13]
|
M. Hong, Z. Luo and M. Razaviyayn, Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems, SIAM Journal on Optimization, 26 (2016), 337-364.
doi: 10.1137/140990309.
|
[14]
|
G. Li and T. Peng., Douglass-Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems, Mathematical Programming, 159 (2016), 371-401.
doi: 10.1007/s10107-015-0963-5.
|
[15]
|
S. Negahban and M. Wainwright, Estimation of (near) low-rank matrices with noise and high-dimensional scaling, Annals of Statistics, 39 (2011), 1069-1097.
doi: 10.1214/10-AOS850.
|
[16]
|
M. Nikolova, M. Ng, S. Zhang and W. Ching, Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization, SIAM Journal on Imaging Sciences, 1 (2008), 2-25.
doi: 10.1137/070692285.
|
[17]
|
G. Obozinski, M. Wainwright and M. Jordan, Support union recovery in high-dimensional multivariate regression, Annals of Statistics, 39 (2011), 1-47.
doi: 10.1214/09-AOS776.
|
[18]
|
L. Rudin and S. Osher, Total variation based image restoration with free local constraints, In Proceedings of the IEEE International Conference on Image Processing, 1 (1994), 31-35.
doi: 10.1109/ICIP.1994.413269.
|
[19]
|
R. Rockafellar and R. Wets, Variational Analysis, Springer Science and Business Media, 2009.
doi: 10.1007/978-3-642-02431-3.
|
[20]
|
P. Shang and L. Kong, On the degrees of freedom of mixed matrix regression, Mathematical Problems in Engineering, 2017 (2017), Art. ID 6942865, 8 pp.
doi: 10.1155/2017/6942865.
|
[21]
|
R. Tibshirani, Regression shrinkage and selection via the Lasso, Journal of the Royal Statistical Society, Series B, 58 (1996), 267-288.
doi: 10.1111/j.2517-6161.1996.tb02080.x.
|
[22]
|
R. Tibshirani, M. Saunders, S. Rosset, J. Zhu and K. Knight, Sparsity and smoothness via the fused Lasso, Journal of the Royal Statistical Society, Series B, 67 (2005), 91-108.
doi: 10.1111/j.1467-9868.2005.00490.x.
|
[23]
|
F. Wang, W. Cao and Z. Xu., Convergence of multi-block Bregman ADMM for nonconvex composite problems, Science China Information Sciences, 61 (2018), 122101, 12pp.
doi: 10.1007/s11432-017-9367-6.
|
[24]
|
X. Xiu, L. Kong, Y. Li and H. Qi, Iterative reweighted methods for $\ell_1-\ell_p$ minimization, Computational Optimization and Applications, 70 (2018), 201-219.
doi: 10.1007/s10589-017-9977-7.
|
[25]
|
X. Xiu, W. Liu, L. Li and L. Kong, Alternating direction method of multipliers for nonconvex fused regression problems, Computational Statistics and Data Analysis, 136 (2019), 59-71.
doi: 10.1016/j.csda.2019.01.002.
|
[26]
|
L. Yang, T. Pong and X. Chen, Alternating direction method of multipliers for a class of nonconvex and nonsmooth problems with applications to background/foreground extraction, SIAM Journal on Imaging Sciences, 10 (2017), 74-110.
doi: 10.1137/15M1027528.
|
[27]
|
M. Yuan, A. Ekici, Z. Lu and R. Monteiro, Dimension reduction and coefficient estimation in multivariate linear regression, Journal of Royal Statistical Society, Series B, 69 (2007), 329-346.
doi: 10.1111/j.1467-9868.2007.00591.x.
|
[28]
|
C. Zhang, Nearly unbiased variable selection under minimax concave penalty, Annals of Statistics, 38 (2010), 894-942.
doi: 10.1214/09-AOS729.
|
[29]
|
T. Zhang, Analysis of multi-stage convex relaxation for sparse regularization, Journal of Machine Learning Research, 11 (2010), 1081-1107.
|
[30]
|
H. Zou and T. Hastie, Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society, Series B, 67 (2005), 301-320.
doi: 10.1111/j.1467-9868.2005.00503.x.
|
[31]
|
H. Zhou and L. Li, Regularized matrix regression, Journal of the Royal Statistical Society, Series B, 76 (2014), 463-483.
doi: 10.1111/rssb.12031.
|
[32]
|
T. Zhou and D. Tao, Godec: Randomized low-rank and sparse matrix decomposition in noisy case, International Conference on Machine Learning, 2011.
|