[1]
|
F. M. Aarestrup and M. G. Koopmans, Sharing data for global infectious disease surveillance and outbreak detection, Trends in Microbiology, 24 (2016), 241-245.
doi: 10.1016/j.tim.2016.01.009.
|
[2]
|
L. A. Adamic and N. Glance, The political blogosphere and the 2004 us election: Divided they blog, in Proceedings of the 3rd International Workshop on Link Discovery, ACM, 2005, 36–43.
|
[3]
|
S. An, P. Peursum, W. Liu and S. Venkatesh, Efficient algorithms for subwindow search in object detection and localization, in 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2009, 264–271.
|
[4]
|
E. Arias-Castro and G. Grimmett, Cluster detection in networks using percolation, Bernoulli, 19 (2013), 676-719.
doi: 10.3150/11-BEJ412.
|
[5]
|
S. N. Bernstein, On certain modifications of chebyshev's inequality, Doklady Akademii Nauk SSSR, 17 (1937), 275-277.
|
[6]
|
F. Chen and D. B. Neill, Non-parametric scan statistics for event detection and forecasting in heterogeneous social media graphs, in ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, 1166–1175.
doi: 10.1145/2623330.2623619.
|
[7]
|
V. Cheplygina, M. de Bruijne and J. P. Pluim, Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis, Medical Image Analysis, 54 (2019), 280-296.
doi: 10.1016/j.media.2019.03.009.
|
[8]
|
C. Deng, Y. Han and B. Zhao, High-performance visual tracking with extreme learning machine framework, IEEE Transactions on Cybernetics(Early Access), 2019, 1–12.
doi: 10.1109/TCYB.2018.2886580.
|
[9]
|
D. Geman and B. Jedynak, An active testing model for tracking roads in satellite images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 18 (1996), 1-14.
doi: 10.1109/34.476006.
|
[10]
|
G. Grimmett, Percolation, vol. 321 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edition, Springer-Verlag, Berlin, 1999.
doi: 10.1007/978-3-662-03981-6.
|
[11]
|
M. Han and Y. Li, Influence analysis: A survey of the state-of-the-art, Mathematical Foundations of Computing, 1 (2018), 201-253.
doi: 10.3934/mfc.2018010.
|
[12]
|
M. Kulldorff, A spatial scan statistic, Communications in Statistics-Theory and Methods, 26 (1997), 1481-1496.
doi: 10.1080/03610929708831995.
|
[13]
|
M. Kulldorff, Spatial scan statistics: Models, calculations, and applications, in Scan Statistics and Applications, Springer, 1999, 303–322.
doi: 10.1007/978-1-4612-1578-3_14.
|
[14]
|
M. Kulldorff, L. Huang, L. Pickle and L. Duczmal, An elliptic spatial scan statistic, Statistics in medicine, 25 (2006), 3929-3943.
doi: 10.1002/sim.2490.
|
[15]
|
M. Langovoy, M. Habeck and B. Schoelkopf, Adaptive nonparametric detection in cryo-electron microscopy, in Proceedings of the 58-th World Statistical Congress, Session: High Dimensional Data, 2011, 4456–4461.
|
[16]
|
M. Langovoy, M. Habeck and B. Schoelkopf, Spatial statistics, image analysis and percolation theory, in The Joint Statistical Meetings Proceedings, Time Series and Network Section, American Statistical Association, Alexandria, VA, 2011, 5571–5581.
|
[17]
|
M. Langovoy and O. Wittich, Detection of Objects in Noisy Images and Site Percolation on Square Lattices, EURANDOM Report No. 2009-035, EURANDOM, Eindhoven, 2009.
|
[18]
|
M. Langovoy and O. Wittich, Randomized algorithms for statistical image analysis and site percolation on square lattices, Statistica Neerlandica, 67 (2013), 337-353.
doi: 10.1111/stan.12010.
|
[19]
|
M. Langovoy and O. Wittich, Robust nonparametric detection of objects in noisy images, Journal of Nonparametric Statistics, 25 (2013), 409-426.
doi: 10.1080/10485252.2012.759570.
|
[20]
|
Y. Liu, B. Zhou, F. Chen and D. W. Cheung, Graph topic scan statistic for spatial event detection, in Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, 2016, 489–498.
doi: 10.1145/2983323.2983744.
|
[21]
|
T. McInerney and D. Terzopoulos, Deformable models in medical image analysis: A survey, Medical Image Analysis, 1 (1996), 91-108.
doi: 10.1016/S1361-8415(96)80007-7.
|
[22]
|
D. B. Neill, A. W. Moore and G. F. Cooper, A bayesian spatial scan statistic, Advances in Neural Information Processing Systems (NIPS), 18 (2006), 1003.
|
[23]
|
G. P. Patil and C. Taillie, Upper level set scan statistic for detecting arbitrarily shaped hotspots, Environmental and Ecological statistics, 11 (2004), 183-197.
doi: 10.1023/B:EEST.0000027208.48919.7e.
|
[24]
|
L. D. Rotz and J. M. Hughes, Advances in detecting and responding to threats from bioterrorism and emerging infectious disease, Nature Medicine, 10 (2004), S130–S136.
doi: 10.1038/nm1152.
|
[25]
|
Y. Ruan, D. Fuhry and S. Parthasarathy, Efficient community detection in large networks using content and links, in Proceedings of the 22nd International Conference on World Wide Web, ACM, 2013, 1089–1098.
doi: 10.1145/2488388.2488483.
|
[26]
|
J. Sharpnack, A. Singh and A. Rinaldo, Changepoint detection over graphs with the spectral scan statistic, AISTATS, 13 (2013), 545-553.
|
[27]
|
J. L. Sharpnack, A. Krishnamurthy and A. Singh, Near-optimal anomaly detection in graphs using Lovasz extended scan statistic, in Advances in Neural Information Processing Systems (NIPS), 2013, 1959–1967.
|
[28]
|
T. Tango and K. Takahashi, A flexibly shaped spatial scan statistic for detecting clusters, International Journal of Health Geographics, 4 (2005), 11.
|
[29]
|
J. V. Uspensky, Introduction to Mathematical Probability, McGraw-Hill, 1937.
|
[30]
|
Y. Wang, Y. Feng, J. Luo and X. Zhang, Voting with feet: Who are leaving hillary clinton and donald trump, in 2016 IEEE International Symposium on Multimedia (ISM), IEEE, 2016, 71–76.
doi: 10.1109/ISM.2016.0022.
|
[31]
|
J. Yang, J. McAuley and J. Leskovec, Community detection in networks with node attributes, in Data Mining (ICDM), 2013 IEEE 13th International Conference on, IEEE, 2013, 1151–1156.
doi: 10.1109/ICDM.2013.167.
|