The linear complexity and the $ k $-error linear complexity of a binary sequence are important security measures for the security of the key stream. By studying binary sequences with the minimum Hamming weight, a new tool, named as the hypercube theory, is developed for $ p^n $-periodic binary sequences. In fact, the hypercube theory is based on a typical sequence decomposition and it is a very important tool for investigating the critical error linear complexity spectrum proposed by Etzion et al. To demonstrate the importance of hypercube theory, we first give a standard hypercube decomposition based on a well-known algorithm for computing linear complexity and show that the linear complexity of the first hypercube in the decomposition is equal to the linear complexity of the original sequence. Second, based on such decomposition, we give a complete characterization for the first decrease of the linear complexity for a $ p^n $-periodic binary sequence. This significantly improves the current existing results in literature. As to the importance of the hypercube, we finally derive a counting formula for the $ m $-hypercubes with the same linear complexity.
Citation: |
[1] |
C. S. Ding, G. Z. Xiao and W. J. Shan, The Stability Theory of Stream Ciphers[M], Lecture Notes in Computer Science, 561. Springer-Verlag, Berlin, 1991.
doi: 10.1007/3-540-54973-0.![]() ![]() ![]() |
[2] |
T. Etzion, N. Kalouptsidis, N. Kolokotronis, K. Limniotis and K. G. Paterson, Properties of the error linear complexity spectrum, IEEE Transactions on Information Theory, 55 (2009), 4681-4686.
doi: 10.1109/TIT.2009.2027495.![]() ![]() ![]() |
[3] |
R. A. Games and A. H. Chan, A fast algorithm for determining the complexity of a binary sequence with period $2^n$, IEEE Trans on Information Theory, 29 (1983), 144-146.
doi: 10.1109/TIT.1983.1056619.![]() ![]() ![]() |
[4] |
F. Fu, H. Niederreiter and M. Su, The characterization of $2^n$-periodic binary sequences with fixed 1-error linear complexity, In: Gong G., Helleseth T., Song H.-Y., Yang K. (eds.) SETA 2006, LNCS, 4086 (2006), 88–103.
doi: 10.1007/11863854_8.![]() ![]() ![]() |
[5] |
Y. K. Han, J. H. Chung and K. Yang, On the $k$-error linear complexity of $p^m$-periodic binary sequences, IEEE Transactions on Information Theory, 53 (2007), 2297-2304.
doi: 10.1109/TIT.2007.896863.![]() ![]() ![]() |
[6] |
K. Kurosawa, F. Sato, T. Sakata and W. Kishimoto, A relationship between linear complexity and $k$-error linear complexity, IEEE Transactions on Information Theory, 46 (2000), 694-698.
doi: 10.1109/18.825845.![]() ![]() ![]() |
[7] |
A. Lauder and K. Paterson, Computing the error linear complexity spectrum of a binary sequence of period $2^n$, IEEE Transactions on Information Theory, 49 (2003), 273-280.
doi: 10.1109/TIT.2002.806136.![]() ![]() ![]() |
[8] |
W. Meidl and H. Niederreiter, Linear complexity k-error linear complexity, and the discrete Fourier transform, J. Complexity, 18 (2002), 87-103.
doi: 10.1006/jcom.2001.0621.![]() ![]() ![]() |
[9] |
W. Meidl, How many bits have to be changed to decrease the linear complexity?, Des. Codes Cryptogr., 33 (2004), 109-122.
doi: 10.1023/B:DESI.0000035466.28660.e9.![]() ![]() ![]() |
[10] |
W. Meidl, On the stablity of $2^n$-periodic binary sequences, IEEE Transactions on Information Theory, 51 (2005), 1151-1155.
doi: 10.1109/TIT.2004.842709.![]() ![]() ![]() |
[11] |
R. A. Rueppel, Analysis and Design of Stream Ciphers, Berlin: Springer-Verlag, 1986.
doi: 10.1007/978-3-642-82865-2.![]() ![]() ![]() |
[12] |
M. Stamp and C. F. Martin, An algorithm for the $k$-error linear complexity of binary sequences with period $2^{n}$, IEEE Trans. Inform. Theory, 39 (1993), 1398-1401.
doi: 10.1109/18.243455.![]() ![]() ![]() |
[13] |
S. M. Wei, G. Z. Xiao and Z. Chen, A fast algorithm for determining the minimal polynomial of a sequence with period $2p^n$ over $GF(q)$, IEEE Trans on Information Theory, 48 (2002), 2754-2758.
doi: 10.1109/TIT.2002.802609.![]() ![]() ![]() |
[14] |
G. Z. Xiao, S. M. Wei, K. Y. Lam and K. Imamura, A fast algorithm for determining the linear complexity of a sequence with period $p^n$ over $GF(q)$, IEEE Trans on Information Theory, 46 (2000), 2203-2206.
doi: 10.1109/18.868492.![]() ![]() ![]() |
[15] |
J. Q. Zhou, On the $k$-error linear complexity of sequences with period 2$p^n$ over GF(q), Des. Codes Cryptogr., 58 (2011), 279-296.
doi: 10.1007/s10623-010-9379-7.![]() ![]() ![]() |
[16] |
J. Q. Zhou, A counterexample concerning the 3-error linear complexity of $2^n$-periodic binary sequences, Des. Codes Cryptogr., 64 (2012), 285-286.
doi: 10.1007/s10623-011-9576-z.![]() ![]() ![]() |
[17] |
J. Q. Zhou and W. Q. Liu, The $k$-error linear complexity distribution for $2^n$-periodic binary sequences, Des. Codes Cryptogr., 73 (2014), 55-75.
doi: 10.1007/s10623-013-9805-8.![]() ![]() ![]() |
[18] |
J. Q. Zhou, W. Q. Liu and X. F. Wang, Complete characterization of the first descent point distribution for the $k$-error linear complexity of $2^n$-periodic binary sequences, Adv. in Math. of Comm., 11 (2017), 429-444.
doi: 10.3934/amc.2017036.![]() ![]() ![]() |
[19] |
J. Q. Zhou, W. Q. Liu and G. L. Zhou, Cube theory and stable $k$-error linear complexity for periodic sequences, Information Security and Cryptology, 70–85, Lecture Notes in Comput. Sci., 8567, Springer, Heidelberg, 2014.
doi: 10.1007/978-3-319-12087-4_5.![]() ![]() ![]() |
[20] |
F. X. Zhu and W. F. Qi, The 2-error linear complexity of $2^n$-periodic binary sequences with linear complexity $2^n$-1, Journal of Electronics (China), 24 (2007), 390-395.
![]() |