November  2019, 2(4): 333-346. doi: 10.3934/mfc.2019021

A single finite-time synchronization scheme of time-delay chaotic system with external periodic disturbance

1. 

Springfield, MO 65801-2604, USA

2. 

Springfield, MO 65810, USA

* Corresponding author: sxryctc@163.com

Published  December 2019

Fund Project: The first author is supported by NSF grant 11872327 and 51777180.

In this paper, dynamical behaviors of three-dimensional chaotic system with time-delay and external periodic disturbance are investigated. When the periodic perturbation term and time-delay are added, the system presents more abundant dynamic behaviors, which can be switched between periodic state and chaotic state. Based on Lyapunov stability theory, a sufficient condition for finite-time synchronization is given. A single controller is proposed to realize finite-time synchronization of time-delay chaotic system with external periodic disturbance. The addressed scheme is provided in the form of linear inequality which is simple and easy to be realized. At the same time, it also displays that when delay term $ \tau $ takes different values, the time of synchronization shows certain difference. The feasibility and effectiveness of the finite-time synchronization method is verified by theoretical analysis and numerical simulation.

Citation: Juanjuan Huang, Yan Zhou, Xuerong Shi, Zuolei Wang. A single finite-time synchronization scheme of time-delay chaotic system with external periodic disturbance. Mathematical Foundations of Computing, 2019, 2 (4) : 333-346. doi: 10.3934/mfc.2019021
References:
[1]

E. N. Lorenz, Deterministic non periodic flow, J Atmos Sci, 20 (1963), 130-141.   Google Scholar

[2]

O. E. Rossler, An equation for hyperchaos, Phys. Lett. A, 71 (1979), 155-157.   Google Scholar

[3]

F. L. Zhu, Observer-based synchronization of uncertain chaotic system and its application to secure communications, Chaos Soliton. Fract, 40 (2009), 2384-2391.  doi: 10.1016/j.chaos.2007.10.052.  Google Scholar

[4]

P. ArenaS. BaglioL. Fortuna and G. Managaro, Hyperchaos from cellular neural networks. Electron Lett, Electron Let, 31 (1995), 250-251.   Google Scholar

[5]

R. VicenteJ. DaudenP. Colet and R. Toral, Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop, IEEE J Quantum Elect, 41 (2005), 541-548.   Google Scholar

[6]

J. MaF. Q. WuG. D. Ren and J. Tang, A class of initials-dependent dynamical systems, Appl. Math. Comput, 298 (2017), 65-76.  doi: 10.1016/j.amc.2016.11.004.  Google Scholar

[7]

Z. AramaS. Jafaria and J. Ma, Using chaotic artificial neural networks to model memory in the brain, Commun. Nonlinear Sci, 44 (2017), 449-459.  doi: 10.1016/j.cnsns.2016.08.025.  Google Scholar

[8]

M. S. AzzazC. Tanougast and S. Sadoudi, A new auto-switched chaotic system and its FPGA implementation, Commun Nonlinear Sci, 18 (2013), 1792-1804.  doi: 10.1016/j.cnsns.2012.11.025.  Google Scholar

[9]

L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett, 64 (1990), 821-823.  doi: 10.1103/PhysRevLett.64.821.  Google Scholar

[10]

C. D. LiX. F. Liao and K. W. Wong, Lag synchronization of hyperchaos with application to secure communications, Chaos Soliton. Fract, 23 (2005), 183-193.  doi: 10.1016/j.chaos.2004.04.025.  Google Scholar

[11]

G. N. TangK. S. Xu and L. L. Jiang, Synchronization in a chaotic neural network with time delay depending on the spatial distance between neurons, Phys. Rev. E, 84 (2011), 046207-046211.   Google Scholar

[12]

J. MaL. HuangZ. B. Xie and C. N. Wang, Simulated test of electric activity of neurons by using Josephson junction based on synchronization scheme, Commun. Nonlinear Sci, 17 (2012), 2659-2669.  doi: 10.1016/j.cnsns.2011.10.029.  Google Scholar

[13]

X. WangX. Z. LiuK. She and S. M. Zhong, Pinning impulsive synchronization of complex dynamical networks with various time-varying delay sizes, Nonlinear Anal-Hybri, 26 (2017), 307-318.  doi: 10.1016/j.nahs.2017.06.005.  Google Scholar

[14]

S. LiangR. Wu and L. Chen, Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay, Physica A, 391 (2012), 5746-5758.  doi: 10.1016/j.physa.2012.06.050.  Google Scholar

[15]

Y. ToopchiJ. MahdiJ. Sadati and J. Wang, Fractional PI pinning synchronization of fractional complex dynamical networks, J. Comput. Appl. Math, 347 (2019), 357-368.  doi: 10.1016/j.cam.2018.08.016.  Google Scholar

[16]

C. F. Feng, Projective synchronization between two different time-delayed chaotic systems using active control approach, Nonlinear Dynam, 62 (2010), 453-459.   Google Scholar

[17]

J. MaL. MiP. ZhouY. Xu and T. Hayat, Phase synchronization between two neurons induced by coupling of electromagnetic field, Appl. Math. Comput, 307 (2017), 321-328.  doi: 10.1016/j.amc.2017.03.002.  Google Scholar

[18]

X. R. Shi and Z. L. Wang, The alternating between complete synchronization and hybrid synchronization of hyperchaotic Lorenz system with time delay, Nonlinear Dynam, 69 (2012), 1177-1190.  doi: 10.1007/s11071-012-0339-9.  Google Scholar

[19]

J. MaF. LiL. Huang and W. Y. Jin, Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system, Commun. Nonlinear Sci, 16 (2011), 3770-3785.   Google Scholar

[20]

W. W. Zhang and J. D. Cao, Lag projective synchronization of fractional-order delayed chaotic systems, J. Franklin I, 356 (2019), 1522-1534.  doi: 10.1016/j.jfranklin.2018.10.024.  Google Scholar

[21]

Z. L. Wang and X. R. Shi, Chaotic bursting lag synchronization of Hindmarsh-Rose system via a single controller, Appl. Math. Comput., 215 (2009), 1091-1097.  doi: 10.1016/j.amc.2009.06.039.  Google Scholar

[22]

X. P. ZhangD. Li and X. H. Zhang, Adaptive fuzzy impulsive synchronization of chaotic systems with random parameters, Chaos, Soliton, Fract, 104 (2017), 77-83.  doi: 10.1016/j.chaos.2017.08.006.  Google Scholar

[23]

M. M. Al-Sawalha and M. S. Noorani, Adaptive anti-synchronization of two identical and different hyperchaotic systems with uncertain parameters, Commun. Nonlinear Sci, 15 (2010), 1036-1047.  doi: 10.1016/j.cnsns.2009.05.037.  Google Scholar

[24]

Z. M. Odibat, Adaptive feedback control and synchronization of non-identical chaotic fractional order systems, Nonlinear Dynam, 60 (2010), 479-487.   Google Scholar

[25]

E. K. Ugur and C. Bar, Control and synchronization of chaos with sliding mode control based on cubic reaching rule, Chaos, Soliton, Fract, 105 (2017), 92-98.  doi: 10.1016/j.chaos.2017.10.008.  Google Scholar

[26]

J. MeiM. H. JiangW. M. Xu and B. Wang, Finite-time synchronization control of complex dynamical networks with time delay, Commun. Nonlinear Sci, 18 (2013), 2462-2478.  doi: 10.1016/j.cnsns.2012.11.009.  Google Scholar

[27]

H. WangZ. Z. HanO. Y. Xie and W. Zhang, Finite-time chaos control of unified chaotic systems with uncertain parameters, Nonlinear Dynam, 55 (2009), 323-328.  doi: 10.1007/s11071-008-9364-0.  Google Scholar

[28]

G. HeJ. A. Fang and Z. Li, Finite-time synchronization of cyclic switched complex networks under feedback control, J. Franklin I, 354 (2017), 3780-3796.  doi: 10.1016/j.jfranklin.2016.10.016.  Google Scholar

[29]

M. C. Pai, Chaotic sliding mode controllers for uncertain time-delay chaotic systems with input nonlinearity, Appl. Math. Comput, 271 (2015), 757-767.  doi: 10.1016/j.amc.2015.09.058.  Google Scholar

[30]

X. R. ShiZ. L. Wang and L. X. Han, Finite-time stochastic synchronization of time-delay neural networks with noise disturbance, Nonlinear Dynam, 88 (2017), 2747-2755.  doi: 10.1007/s11071-017-3408-2.  Google Scholar

[31]

Z. W. CaiL. H. Huang and L. L. Zhang, Finite-time synchronization of master-slave neural networks with time-delays and discontinuous activations, Appl. Math. Model., 47 (2017), 208-226.  doi: 10.1016/j.apm.2017.03.024.  Google Scholar

[32]

H. WangZ. Z. HanQ. Y. Xie and W. Zhang, Finite-time chaos synchronization of unified chaotic system with uncertain parameters, Commun. Nonlinear Sci, 14 (2009), 2239-2247.   Google Scholar

[33]

H. WangZ. Z. HanQ. Y. Xie and W. Zhang, Finite-time chaos control via nonsingular terminal sliding mode control, Commun. Nonlinear Sci, 14 (2009), 2728-2733.  doi: 10.1016/j.cnsns.2008.08.013.  Google Scholar

[34]

R. Z. Luo and H. P. Su, Finite-time control and synchronization of a class of systems via the twisting controller, Chinese J. Phys, 55 (2017), 2199-2207.  doi: 10.1016/j.cjph.2017.09.003.  Google Scholar

[35]

J. H. Lü and G. R. Chen, A new chaotic attractor coined, Int. J. Bifur. Chaos, 12 (2002), 659-661.  doi: 10.1142/S0218127402004620.  Google Scholar

show all references

References:
[1]

E. N. Lorenz, Deterministic non periodic flow, J Atmos Sci, 20 (1963), 130-141.   Google Scholar

[2]

O. E. Rossler, An equation for hyperchaos, Phys. Lett. A, 71 (1979), 155-157.   Google Scholar

[3]

F. L. Zhu, Observer-based synchronization of uncertain chaotic system and its application to secure communications, Chaos Soliton. Fract, 40 (2009), 2384-2391.  doi: 10.1016/j.chaos.2007.10.052.  Google Scholar

[4]

P. ArenaS. BaglioL. Fortuna and G. Managaro, Hyperchaos from cellular neural networks. Electron Lett, Electron Let, 31 (1995), 250-251.   Google Scholar

[5]

R. VicenteJ. DaudenP. Colet and R. Toral, Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop, IEEE J Quantum Elect, 41 (2005), 541-548.   Google Scholar

[6]

J. MaF. Q. WuG. D. Ren and J. Tang, A class of initials-dependent dynamical systems, Appl. Math. Comput, 298 (2017), 65-76.  doi: 10.1016/j.amc.2016.11.004.  Google Scholar

[7]

Z. AramaS. Jafaria and J. Ma, Using chaotic artificial neural networks to model memory in the brain, Commun. Nonlinear Sci, 44 (2017), 449-459.  doi: 10.1016/j.cnsns.2016.08.025.  Google Scholar

[8]

M. S. AzzazC. Tanougast and S. Sadoudi, A new auto-switched chaotic system and its FPGA implementation, Commun Nonlinear Sci, 18 (2013), 1792-1804.  doi: 10.1016/j.cnsns.2012.11.025.  Google Scholar

[9]

L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett, 64 (1990), 821-823.  doi: 10.1103/PhysRevLett.64.821.  Google Scholar

[10]

C. D. LiX. F. Liao and K. W. Wong, Lag synchronization of hyperchaos with application to secure communications, Chaos Soliton. Fract, 23 (2005), 183-193.  doi: 10.1016/j.chaos.2004.04.025.  Google Scholar

[11]

G. N. TangK. S. Xu and L. L. Jiang, Synchronization in a chaotic neural network with time delay depending on the spatial distance between neurons, Phys. Rev. E, 84 (2011), 046207-046211.   Google Scholar

[12]

J. MaL. HuangZ. B. Xie and C. N. Wang, Simulated test of electric activity of neurons by using Josephson junction based on synchronization scheme, Commun. Nonlinear Sci, 17 (2012), 2659-2669.  doi: 10.1016/j.cnsns.2011.10.029.  Google Scholar

[13]

X. WangX. Z. LiuK. She and S. M. Zhong, Pinning impulsive synchronization of complex dynamical networks with various time-varying delay sizes, Nonlinear Anal-Hybri, 26 (2017), 307-318.  doi: 10.1016/j.nahs.2017.06.005.  Google Scholar

[14]

S. LiangR. Wu and L. Chen, Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay, Physica A, 391 (2012), 5746-5758.  doi: 10.1016/j.physa.2012.06.050.  Google Scholar

[15]

Y. ToopchiJ. MahdiJ. Sadati and J. Wang, Fractional PI pinning synchronization of fractional complex dynamical networks, J. Comput. Appl. Math, 347 (2019), 357-368.  doi: 10.1016/j.cam.2018.08.016.  Google Scholar

[16]

C. F. Feng, Projective synchronization between two different time-delayed chaotic systems using active control approach, Nonlinear Dynam, 62 (2010), 453-459.   Google Scholar

[17]

J. MaL. MiP. ZhouY. Xu and T. Hayat, Phase synchronization between two neurons induced by coupling of electromagnetic field, Appl. Math. Comput, 307 (2017), 321-328.  doi: 10.1016/j.amc.2017.03.002.  Google Scholar

[18]

X. R. Shi and Z. L. Wang, The alternating between complete synchronization and hybrid synchronization of hyperchaotic Lorenz system with time delay, Nonlinear Dynam, 69 (2012), 1177-1190.  doi: 10.1007/s11071-012-0339-9.  Google Scholar

[19]

J. MaF. LiL. Huang and W. Y. Jin, Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system, Commun. Nonlinear Sci, 16 (2011), 3770-3785.   Google Scholar

[20]

W. W. Zhang and J. D. Cao, Lag projective synchronization of fractional-order delayed chaotic systems, J. Franklin I, 356 (2019), 1522-1534.  doi: 10.1016/j.jfranklin.2018.10.024.  Google Scholar

[21]

Z. L. Wang and X. R. Shi, Chaotic bursting lag synchronization of Hindmarsh-Rose system via a single controller, Appl. Math. Comput., 215 (2009), 1091-1097.  doi: 10.1016/j.amc.2009.06.039.  Google Scholar

[22]

X. P. ZhangD. Li and X. H. Zhang, Adaptive fuzzy impulsive synchronization of chaotic systems with random parameters, Chaos, Soliton, Fract, 104 (2017), 77-83.  doi: 10.1016/j.chaos.2017.08.006.  Google Scholar

[23]

M. M. Al-Sawalha and M. S. Noorani, Adaptive anti-synchronization of two identical and different hyperchaotic systems with uncertain parameters, Commun. Nonlinear Sci, 15 (2010), 1036-1047.  doi: 10.1016/j.cnsns.2009.05.037.  Google Scholar

[24]

Z. M. Odibat, Adaptive feedback control and synchronization of non-identical chaotic fractional order systems, Nonlinear Dynam, 60 (2010), 479-487.   Google Scholar

[25]

E. K. Ugur and C. Bar, Control and synchronization of chaos with sliding mode control based on cubic reaching rule, Chaos, Soliton, Fract, 105 (2017), 92-98.  doi: 10.1016/j.chaos.2017.10.008.  Google Scholar

[26]

J. MeiM. H. JiangW. M. Xu and B. Wang, Finite-time synchronization control of complex dynamical networks with time delay, Commun. Nonlinear Sci, 18 (2013), 2462-2478.  doi: 10.1016/j.cnsns.2012.11.009.  Google Scholar

[27]

H. WangZ. Z. HanO. Y. Xie and W. Zhang, Finite-time chaos control of unified chaotic systems with uncertain parameters, Nonlinear Dynam, 55 (2009), 323-328.  doi: 10.1007/s11071-008-9364-0.  Google Scholar

[28]

G. HeJ. A. Fang and Z. Li, Finite-time synchronization of cyclic switched complex networks under feedback control, J. Franklin I, 354 (2017), 3780-3796.  doi: 10.1016/j.jfranklin.2016.10.016.  Google Scholar

[29]

M. C. Pai, Chaotic sliding mode controllers for uncertain time-delay chaotic systems with input nonlinearity, Appl. Math. Comput, 271 (2015), 757-767.  doi: 10.1016/j.amc.2015.09.058.  Google Scholar

[30]

X. R. ShiZ. L. Wang and L. X. Han, Finite-time stochastic synchronization of time-delay neural networks with noise disturbance, Nonlinear Dynam, 88 (2017), 2747-2755.  doi: 10.1007/s11071-017-3408-2.  Google Scholar

[31]

Z. W. CaiL. H. Huang and L. L. Zhang, Finite-time synchronization of master-slave neural networks with time-delays and discontinuous activations, Appl. Math. Model., 47 (2017), 208-226.  doi: 10.1016/j.apm.2017.03.024.  Google Scholar

[32]

H. WangZ. Z. HanQ. Y. Xie and W. Zhang, Finite-time chaos synchronization of unified chaotic system with uncertain parameters, Commun. Nonlinear Sci, 14 (2009), 2239-2247.   Google Scholar

[33]

H. WangZ. Z. HanQ. Y. Xie and W. Zhang, Finite-time chaos control via nonsingular terminal sliding mode control, Commun. Nonlinear Sci, 14 (2009), 2728-2733.  doi: 10.1016/j.cnsns.2008.08.013.  Google Scholar

[34]

R. Z. Luo and H. P. Su, Finite-time control and synchronization of a class of systems via the twisting controller, Chinese J. Phys, 55 (2017), 2199-2207.  doi: 10.1016/j.cjph.2017.09.003.  Google Scholar

[35]

J. H. Lü and G. R. Chen, A new chaotic attractor coined, Int. J. Bifur. Chaos, 12 (2002), 659-661.  doi: 10.1142/S0218127402004620.  Google Scholar

Figure 1.  Phase trajectory and the time series of Eq.(9) with $ a = 15,b = 3,c = 7 $ (a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)
Figure 2.  Phase trajectory and the time series of Eq.(9) with $ a = 15,b = 0.91,c = 7 $ (a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)
Figure 3.  Phase trajectory and the time series of Eq.(9) with $ a = 15,b = 0.5,c = 7 $ (a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)
Figure 4.  Phase trajectory and the time series of Eq.(9) with $ a = 15,b = 3,c = 2 $ (a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)
Figure 5.  Phase trajectory and the time series of Eq.(10) with $ a = 15,b = 0.91,c = 7,A = 10,\omega = 0.001 $ (a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)
Figure 6.  Phase trajectory and the time series of Eq.(10) with $ a = 15,b = 3,c = 7,A = 100,\omega = 0.001 $ (a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)
Figure 7.  Phase trajectory and the time series of Eq.(11) with $ a = 15,b = 0.91,c = 7,A = 10,\omega = 0.001,\tau = 0.3 $

(a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)

Figure 8.  Phase trajectory and the time series of Eq.(11) with $ a = 15,b = 3,c = 7,A = 0.1,\omega = 0.001,\tau = 0.2 $

(a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)

Figure 9.  Phase trajectory and the time series of Eq.(11) with $ a = 15,b = 3,c = 7,A = 0.1,\omega = 0.001,\tau = 0.3 $

(a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)

Figure 10.  2D overview chaotic attractor and the chaotic time series of Eq.(11) with $ \tau = 0.005 $ (a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)
Figure 11.  2D overview chaotic attractor and the chaotic time series of Eq.(11) with $ \tau = 0.3 $ (a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)
Figure 12.  The error dynamics between systems (11) and (12) with $ \tau = 0.3 $ (a) $ e_1 $ (b) $ e_2 $ (b) $ e_3 $
Figure 13.  The error states $ e_1 $ between systems (11) and (12) with $ \tau = 0.005,\quad\tau = 0.05\quad and \quad \tau = 0.3 $
Figure 14.  The error states $ e_2 $ between systems (11) and (12) with $ \tau = 0.005,\quad\tau = 0.05\quad and \quad \tau = 0.3 $
Figure 15.  The error states $ e_3 $ between systems (11) and (12) with $ \tau = 0.005,\quad \tau = 0.05\quad and \quad \tau = 0.3 $
[1]

Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251

[2]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[3]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[4]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[5]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[6]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[7]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[8]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[9]

Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177

[10]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[11]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[12]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[13]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[14]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[15]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[16]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[17]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[18]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[19]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[20]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

 Impact Factor: 

Metrics

  • PDF downloads (108)
  • HTML views (356)
  • Cited by (1)

Other articles
by authors

[Back to Top]