November  2019, 2(4): 333-346. doi: 10.3934/mfc.2019021

A single finite-time synchronization scheme of time-delay chaotic system with external periodic disturbance

1. 

Springfield, MO 65801-2604, USA

2. 

Springfield, MO 65810, USA

* Corresponding author: sxryctc@163.com

Published  December 2019

Fund Project: The first author is supported by NSF grant 11872327 and 51777180.

In this paper, dynamical behaviors of three-dimensional chaotic system with time-delay and external periodic disturbance are investigated. When the periodic perturbation term and time-delay are added, the system presents more abundant dynamic behaviors, which can be switched between periodic state and chaotic state. Based on Lyapunov stability theory, a sufficient condition for finite-time synchronization is given. A single controller is proposed to realize finite-time synchronization of time-delay chaotic system with external periodic disturbance. The addressed scheme is provided in the form of linear inequality which is simple and easy to be realized. At the same time, it also displays that when delay term $ \tau $ takes different values, the time of synchronization shows certain difference. The feasibility and effectiveness of the finite-time synchronization method is verified by theoretical analysis and numerical simulation.

Citation: Juanjuan Huang, Yan Zhou, Xuerong Shi, Zuolei Wang. A single finite-time synchronization scheme of time-delay chaotic system with external periodic disturbance. Mathematical Foundations of Computing, 2019, 2 (4) : 333-346. doi: 10.3934/mfc.2019021
References:
[1]

E. N. Lorenz, Deterministic non periodic flow, J Atmos Sci, 20 (1963), 130-141.   Google Scholar

[2]

O. E. Rossler, An equation for hyperchaos, Phys. Lett. A, 71 (1979), 155-157.   Google Scholar

[3]

F. L. Zhu, Observer-based synchronization of uncertain chaotic system and its application to secure communications, Chaos Soliton. Fract, 40 (2009), 2384-2391.  doi: 10.1016/j.chaos.2007.10.052.  Google Scholar

[4]

P. ArenaS. BaglioL. Fortuna and G. Managaro, Hyperchaos from cellular neural networks. Electron Lett, Electron Let, 31 (1995), 250-251.   Google Scholar

[5]

R. VicenteJ. DaudenP. Colet and R. Toral, Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop, IEEE J Quantum Elect, 41 (2005), 541-548.   Google Scholar

[6]

J. MaF. Q. WuG. D. Ren and J. Tang, A class of initials-dependent dynamical systems, Appl. Math. Comput, 298 (2017), 65-76.  doi: 10.1016/j.amc.2016.11.004.  Google Scholar

[7]

Z. AramaS. Jafaria and J. Ma, Using chaotic artificial neural networks to model memory in the brain, Commun. Nonlinear Sci, 44 (2017), 449-459.  doi: 10.1016/j.cnsns.2016.08.025.  Google Scholar

[8]

M. S. AzzazC. Tanougast and S. Sadoudi, A new auto-switched chaotic system and its FPGA implementation, Commun Nonlinear Sci, 18 (2013), 1792-1804.  doi: 10.1016/j.cnsns.2012.11.025.  Google Scholar

[9]

L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett, 64 (1990), 821-823.  doi: 10.1103/PhysRevLett.64.821.  Google Scholar

[10]

C. D. LiX. F. Liao and K. W. Wong, Lag synchronization of hyperchaos with application to secure communications, Chaos Soliton. Fract, 23 (2005), 183-193.  doi: 10.1016/j.chaos.2004.04.025.  Google Scholar

[11]

G. N. TangK. S. Xu and L. L. Jiang, Synchronization in a chaotic neural network with time delay depending on the spatial distance between neurons, Phys. Rev. E, 84 (2011), 046207-046211.   Google Scholar

[12]

J. MaL. HuangZ. B. Xie and C. N. Wang, Simulated test of electric activity of neurons by using Josephson junction based on synchronization scheme, Commun. Nonlinear Sci, 17 (2012), 2659-2669.  doi: 10.1016/j.cnsns.2011.10.029.  Google Scholar

[13]

X. WangX. Z. LiuK. She and S. M. Zhong, Pinning impulsive synchronization of complex dynamical networks with various time-varying delay sizes, Nonlinear Anal-Hybri, 26 (2017), 307-318.  doi: 10.1016/j.nahs.2017.06.005.  Google Scholar

[14]

S. LiangR. Wu and L. Chen, Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay, Physica A, 391 (2012), 5746-5758.  doi: 10.1016/j.physa.2012.06.050.  Google Scholar

[15]

Y. ToopchiJ. MahdiJ. Sadati and J. Wang, Fractional PI pinning synchronization of fractional complex dynamical networks, J. Comput. Appl. Math, 347 (2019), 357-368.  doi: 10.1016/j.cam.2018.08.016.  Google Scholar

[16]

C. F. Feng, Projective synchronization between two different time-delayed chaotic systems using active control approach, Nonlinear Dynam, 62 (2010), 453-459.   Google Scholar

[17]

J. MaL. MiP. ZhouY. Xu and T. Hayat, Phase synchronization between two neurons induced by coupling of electromagnetic field, Appl. Math. Comput, 307 (2017), 321-328.  doi: 10.1016/j.amc.2017.03.002.  Google Scholar

[18]

X. R. Shi and Z. L. Wang, The alternating between complete synchronization and hybrid synchronization of hyperchaotic Lorenz system with time delay, Nonlinear Dynam, 69 (2012), 1177-1190.  doi: 10.1007/s11071-012-0339-9.  Google Scholar

[19]

J. MaF. LiL. Huang and W. Y. Jin, Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system, Commun. Nonlinear Sci, 16 (2011), 3770-3785.   Google Scholar

[20]

W. W. Zhang and J. D. Cao, Lag projective synchronization of fractional-order delayed chaotic systems, J. Franklin I, 356 (2019), 1522-1534.  doi: 10.1016/j.jfranklin.2018.10.024.  Google Scholar

[21]

Z. L. Wang and X. R. Shi, Chaotic bursting lag synchronization of Hindmarsh-Rose system via a single controller, Appl. Math. Comput., 215 (2009), 1091-1097.  doi: 10.1016/j.amc.2009.06.039.  Google Scholar

[22]

X. P. ZhangD. Li and X. H. Zhang, Adaptive fuzzy impulsive synchronization of chaotic systems with random parameters, Chaos, Soliton, Fract, 104 (2017), 77-83.  doi: 10.1016/j.chaos.2017.08.006.  Google Scholar

[23]

M. M. Al-Sawalha and M. S. Noorani, Adaptive anti-synchronization of two identical and different hyperchaotic systems with uncertain parameters, Commun. Nonlinear Sci, 15 (2010), 1036-1047.  doi: 10.1016/j.cnsns.2009.05.037.  Google Scholar

[24]

Z. M. Odibat, Adaptive feedback control and synchronization of non-identical chaotic fractional order systems, Nonlinear Dynam, 60 (2010), 479-487.   Google Scholar

[25]

E. K. Ugur and C. Bar, Control and synchronization of chaos with sliding mode control based on cubic reaching rule, Chaos, Soliton, Fract, 105 (2017), 92-98.  doi: 10.1016/j.chaos.2017.10.008.  Google Scholar

[26]

J. MeiM. H. JiangW. M. Xu and B. Wang, Finite-time synchronization control of complex dynamical networks with time delay, Commun. Nonlinear Sci, 18 (2013), 2462-2478.  doi: 10.1016/j.cnsns.2012.11.009.  Google Scholar

[27]

H. WangZ. Z. HanO. Y. Xie and W. Zhang, Finite-time chaos control of unified chaotic systems with uncertain parameters, Nonlinear Dynam, 55 (2009), 323-328.  doi: 10.1007/s11071-008-9364-0.  Google Scholar

[28]

G. HeJ. A. Fang and Z. Li, Finite-time synchronization of cyclic switched complex networks under feedback control, J. Franklin I, 354 (2017), 3780-3796.  doi: 10.1016/j.jfranklin.2016.10.016.  Google Scholar

[29]

M. C. Pai, Chaotic sliding mode controllers for uncertain time-delay chaotic systems with input nonlinearity, Appl. Math. Comput, 271 (2015), 757-767.  doi: 10.1016/j.amc.2015.09.058.  Google Scholar

[30]

X. R. ShiZ. L. Wang and L. X. Han, Finite-time stochastic synchronization of time-delay neural networks with noise disturbance, Nonlinear Dynam, 88 (2017), 2747-2755.  doi: 10.1007/s11071-017-3408-2.  Google Scholar

[31]

Z. W. CaiL. H. Huang and L. L. Zhang, Finite-time synchronization of master-slave neural networks with time-delays and discontinuous activations, Appl. Math. Model., 47 (2017), 208-226.  doi: 10.1016/j.apm.2017.03.024.  Google Scholar

[32]

H. WangZ. Z. HanQ. Y. Xie and W. Zhang, Finite-time chaos synchronization of unified chaotic system with uncertain parameters, Commun. Nonlinear Sci, 14 (2009), 2239-2247.   Google Scholar

[33]

H. WangZ. Z. HanQ. Y. Xie and W. Zhang, Finite-time chaos control via nonsingular terminal sliding mode control, Commun. Nonlinear Sci, 14 (2009), 2728-2733.  doi: 10.1016/j.cnsns.2008.08.013.  Google Scholar

[34]

R. Z. Luo and H. P. Su, Finite-time control and synchronization of a class of systems via the twisting controller, Chinese J. Phys, 55 (2017), 2199-2207.  doi: 10.1016/j.cjph.2017.09.003.  Google Scholar

[35]

J. H. Lü and G. R. Chen, A new chaotic attractor coined, Int. J. Bifur. Chaos, 12 (2002), 659-661.  doi: 10.1142/S0218127402004620.  Google Scholar

show all references

References:
[1]

E. N. Lorenz, Deterministic non periodic flow, J Atmos Sci, 20 (1963), 130-141.   Google Scholar

[2]

O. E. Rossler, An equation for hyperchaos, Phys. Lett. A, 71 (1979), 155-157.   Google Scholar

[3]

F. L. Zhu, Observer-based synchronization of uncertain chaotic system and its application to secure communications, Chaos Soliton. Fract, 40 (2009), 2384-2391.  doi: 10.1016/j.chaos.2007.10.052.  Google Scholar

[4]

P. ArenaS. BaglioL. Fortuna and G. Managaro, Hyperchaos from cellular neural networks. Electron Lett, Electron Let, 31 (1995), 250-251.   Google Scholar

[5]

R. VicenteJ. DaudenP. Colet and R. Toral, Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop, IEEE J Quantum Elect, 41 (2005), 541-548.   Google Scholar

[6]

J. MaF. Q. WuG. D. Ren and J. Tang, A class of initials-dependent dynamical systems, Appl. Math. Comput, 298 (2017), 65-76.  doi: 10.1016/j.amc.2016.11.004.  Google Scholar

[7]

Z. AramaS. Jafaria and J. Ma, Using chaotic artificial neural networks to model memory in the brain, Commun. Nonlinear Sci, 44 (2017), 449-459.  doi: 10.1016/j.cnsns.2016.08.025.  Google Scholar

[8]

M. S. AzzazC. Tanougast and S. Sadoudi, A new auto-switched chaotic system and its FPGA implementation, Commun Nonlinear Sci, 18 (2013), 1792-1804.  doi: 10.1016/j.cnsns.2012.11.025.  Google Scholar

[9]

L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett, 64 (1990), 821-823.  doi: 10.1103/PhysRevLett.64.821.  Google Scholar

[10]

C. D. LiX. F. Liao and K. W. Wong, Lag synchronization of hyperchaos with application to secure communications, Chaos Soliton. Fract, 23 (2005), 183-193.  doi: 10.1016/j.chaos.2004.04.025.  Google Scholar

[11]

G. N. TangK. S. Xu and L. L. Jiang, Synchronization in a chaotic neural network with time delay depending on the spatial distance between neurons, Phys. Rev. E, 84 (2011), 046207-046211.   Google Scholar

[12]

J. MaL. HuangZ. B. Xie and C. N. Wang, Simulated test of electric activity of neurons by using Josephson junction based on synchronization scheme, Commun. Nonlinear Sci, 17 (2012), 2659-2669.  doi: 10.1016/j.cnsns.2011.10.029.  Google Scholar

[13]

X. WangX. Z. LiuK. She and S. M. Zhong, Pinning impulsive synchronization of complex dynamical networks with various time-varying delay sizes, Nonlinear Anal-Hybri, 26 (2017), 307-318.  doi: 10.1016/j.nahs.2017.06.005.  Google Scholar

[14]

S. LiangR. Wu and L. Chen, Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay, Physica A, 391 (2012), 5746-5758.  doi: 10.1016/j.physa.2012.06.050.  Google Scholar

[15]

Y. ToopchiJ. MahdiJ. Sadati and J. Wang, Fractional PI pinning synchronization of fractional complex dynamical networks, J. Comput. Appl. Math, 347 (2019), 357-368.  doi: 10.1016/j.cam.2018.08.016.  Google Scholar

[16]

C. F. Feng, Projective synchronization between two different time-delayed chaotic systems using active control approach, Nonlinear Dynam, 62 (2010), 453-459.   Google Scholar

[17]

J. MaL. MiP. ZhouY. Xu and T. Hayat, Phase synchronization between two neurons induced by coupling of electromagnetic field, Appl. Math. Comput, 307 (2017), 321-328.  doi: 10.1016/j.amc.2017.03.002.  Google Scholar

[18]

X. R. Shi and Z. L. Wang, The alternating between complete synchronization and hybrid synchronization of hyperchaotic Lorenz system with time delay, Nonlinear Dynam, 69 (2012), 1177-1190.  doi: 10.1007/s11071-012-0339-9.  Google Scholar

[19]

J. MaF. LiL. Huang and W. Y. Jin, Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system, Commun. Nonlinear Sci, 16 (2011), 3770-3785.   Google Scholar

[20]

W. W. Zhang and J. D. Cao, Lag projective synchronization of fractional-order delayed chaotic systems, J. Franklin I, 356 (2019), 1522-1534.  doi: 10.1016/j.jfranklin.2018.10.024.  Google Scholar

[21]

Z. L. Wang and X. R. Shi, Chaotic bursting lag synchronization of Hindmarsh-Rose system via a single controller, Appl. Math. Comput., 215 (2009), 1091-1097.  doi: 10.1016/j.amc.2009.06.039.  Google Scholar

[22]

X. P. ZhangD. Li and X. H. Zhang, Adaptive fuzzy impulsive synchronization of chaotic systems with random parameters, Chaos, Soliton, Fract, 104 (2017), 77-83.  doi: 10.1016/j.chaos.2017.08.006.  Google Scholar

[23]

M. M. Al-Sawalha and M. S. Noorani, Adaptive anti-synchronization of two identical and different hyperchaotic systems with uncertain parameters, Commun. Nonlinear Sci, 15 (2010), 1036-1047.  doi: 10.1016/j.cnsns.2009.05.037.  Google Scholar

[24]

Z. M. Odibat, Adaptive feedback control and synchronization of non-identical chaotic fractional order systems, Nonlinear Dynam, 60 (2010), 479-487.   Google Scholar

[25]

E. K. Ugur and C. Bar, Control and synchronization of chaos with sliding mode control based on cubic reaching rule, Chaos, Soliton, Fract, 105 (2017), 92-98.  doi: 10.1016/j.chaos.2017.10.008.  Google Scholar

[26]

J. MeiM. H. JiangW. M. Xu and B. Wang, Finite-time synchronization control of complex dynamical networks with time delay, Commun. Nonlinear Sci, 18 (2013), 2462-2478.  doi: 10.1016/j.cnsns.2012.11.009.  Google Scholar

[27]

H. WangZ. Z. HanO. Y. Xie and W. Zhang, Finite-time chaos control of unified chaotic systems with uncertain parameters, Nonlinear Dynam, 55 (2009), 323-328.  doi: 10.1007/s11071-008-9364-0.  Google Scholar

[28]

G. HeJ. A. Fang and Z. Li, Finite-time synchronization of cyclic switched complex networks under feedback control, J. Franklin I, 354 (2017), 3780-3796.  doi: 10.1016/j.jfranklin.2016.10.016.  Google Scholar

[29]

M. C. Pai, Chaotic sliding mode controllers for uncertain time-delay chaotic systems with input nonlinearity, Appl. Math. Comput, 271 (2015), 757-767.  doi: 10.1016/j.amc.2015.09.058.  Google Scholar

[30]

X. R. ShiZ. L. Wang and L. X. Han, Finite-time stochastic synchronization of time-delay neural networks with noise disturbance, Nonlinear Dynam, 88 (2017), 2747-2755.  doi: 10.1007/s11071-017-3408-2.  Google Scholar

[31]

Z. W. CaiL. H. Huang and L. L. Zhang, Finite-time synchronization of master-slave neural networks with time-delays and discontinuous activations, Appl. Math. Model., 47 (2017), 208-226.  doi: 10.1016/j.apm.2017.03.024.  Google Scholar

[32]

H. WangZ. Z. HanQ. Y. Xie and W. Zhang, Finite-time chaos synchronization of unified chaotic system with uncertain parameters, Commun. Nonlinear Sci, 14 (2009), 2239-2247.   Google Scholar

[33]

H. WangZ. Z. HanQ. Y. Xie and W. Zhang, Finite-time chaos control via nonsingular terminal sliding mode control, Commun. Nonlinear Sci, 14 (2009), 2728-2733.  doi: 10.1016/j.cnsns.2008.08.013.  Google Scholar

[34]

R. Z. Luo and H. P. Su, Finite-time control and synchronization of a class of systems via the twisting controller, Chinese J. Phys, 55 (2017), 2199-2207.  doi: 10.1016/j.cjph.2017.09.003.  Google Scholar

[35]

J. H. Lü and G. R. Chen, A new chaotic attractor coined, Int. J. Bifur. Chaos, 12 (2002), 659-661.  doi: 10.1142/S0218127402004620.  Google Scholar

Figure 1.  Phase trajectory and the time series of Eq.(9) with $ a = 15,b = 3,c = 7 $ (a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)
Figure 2.  Phase trajectory and the time series of Eq.(9) with $ a = 15,b = 0.91,c = 7 $ (a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)
Figure 3.  Phase trajectory and the time series of Eq.(9) with $ a = 15,b = 0.5,c = 7 $ (a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)
Figure 4.  Phase trajectory and the time series of Eq.(9) with $ a = 15,b = 3,c = 2 $ (a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)
Figure 5.  Phase trajectory and the time series of Eq.(10) with $ a = 15,b = 0.91,c = 7,A = 10,\omega = 0.001 $ (a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)
Figure 6.  Phase trajectory and the time series of Eq.(10) with $ a = 15,b = 3,c = 7,A = 100,\omega = 0.001 $ (a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)
Figure 7.  Phase trajectory and the time series of Eq.(11) with $ a = 15,b = 0.91,c = 7,A = 10,\omega = 0.001,\tau = 0.3 $

(a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)

Figure 8.  Phase trajectory and the time series of Eq.(11) with $ a = 15,b = 3,c = 7,A = 0.1,\omega = 0.001,\tau = 0.2 $

(a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)

Figure 9.  Phase trajectory and the time series of Eq.(11) with $ a = 15,b = 3,c = 7,A = 0.1,\omega = 0.001,\tau = 0.3 $

(a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)

Figure 10.  2D overview chaotic attractor and the chaotic time series of Eq.(11) with $ \tau = 0.005 $ (a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)
Figure 11.  2D overview chaotic attractor and the chaotic time series of Eq.(11) with $ \tau = 0.3 $ (a) ($ x_1,x_2 $) (b) ($ t ,x_1 $)
Figure 12.  The error dynamics between systems (11) and (12) with $ \tau = 0.3 $ (a) $ e_1 $ (b) $ e_2 $ (b) $ e_3 $
Figure 13.  The error states $ e_1 $ between systems (11) and (12) with $ \tau = 0.005,\quad\tau = 0.05\quad and \quad \tau = 0.3 $
Figure 14.  The error states $ e_2 $ between systems (11) and (12) with $ \tau = 0.005,\quad\tau = 0.05\quad and \quad \tau = 0.3 $
Figure 15.  The error states $ e_3 $ between systems (11) and (12) with $ \tau = 0.005,\quad \tau = 0.05\quad and \quad \tau = 0.3 $
[1]

Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020248

[2]

M. Syed Ali, L. Palanisamy, Nallappan Gunasekaran, Ahmed Alsaedi, Bashir Ahmad. Finite-time exponential synchronization of reaction-diffusion delayed complex-dynamical networks. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020395

[3]

Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115

[4]

Zhong-Jie Han, Gen-Qi Xu. Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks & Heterogeneous Media, 2011, 6 (2) : 297-327. doi: 10.3934/nhm.2011.6.297

[5]

Arno Berger. On finite-time hyperbolicity. Communications on Pure & Applied Analysis, 2011, 10 (3) : 963-981. doi: 10.3934/cpaa.2011.10.963

[6]

Jianjun Paul Tian. Finite-time perturbations of dynamical systems and applications to tumor therapy. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 469-479. doi: 10.3934/dcdsb.2009.12.469

[7]

Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020251

[8]

Arno Berger, Doan Thai Son, Stefan Siegmund. Nonautonomous finite-time dynamics. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 463-492. doi: 10.3934/dcdsb.2008.9.463

[9]

Jianping Zhou, Yamin Liu, Ju H. Park, Qingkai Kong, Zhen Wang. Fault-tolerant anti-synchronization control for chaotic switched neural networks with time delay and reaction diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020357

[10]

J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731

[11]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[12]

Sanjeeva Balasuriya. Uncertainty in finite-time Lyapunov exponent computations. Journal of Computational Dynamics, 2020, 7 (2) : 313-337. doi: 10.3934/jcd.2020013

[13]

Fatiha Alabau-Boussouira, Vincent Perrollaz, Lionel Rosier. Finite-time stabilization of a network of strings. Mathematical Control & Related Fields, 2015, 5 (4) : 721-742. doi: 10.3934/mcrf.2015.5.721

[14]

Richard H. Rand, Asok K. Sen. A numerical investigation of the dynamics of a system of two time-delay coupled relaxation oscillators. Communications on Pure & Applied Analysis, 2003, 2 (4) : 567-577. doi: 10.3934/cpaa.2003.2.567

[15]

Linna Li, Changjun Yu, Ning Zhang, Yanqin Bai, Zhiyuan Gao. A time-scaling technique for time-delay switched systems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1825-1843. doi: 10.3934/dcdss.2020108

[16]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020221

[17]

Tingwen Huang, Guanrong Chen, Juergen Kurths. Synchronization of chaotic systems with time-varying coupling delays. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1071-1082. doi: 10.3934/dcdsb.2011.16.1071

[18]

B. Cantó, C. Coll, A. Herrero, E. Sánchez, N. Thome. Pole-assignment of discrete time-delay systems with symmetries. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 641-649. doi: 10.3934/dcdsb.2006.6.641

[19]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2019  doi: 10.3934/jimo.2019113

[20]

Ming He, Xiaoyun Ma, Weijiang Zhang. Oscillation death in systems of oscillators with transferable coupling and time-delay. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 737-745. doi: 10.3934/dcds.2001.7.737

 Impact Factor: 

Metrics

  • PDF downloads (99)
  • HTML views (279)
  • Cited by (1)

Other articles
by authors

[Back to Top]