February  2020, 3(1): 1-9. doi: 10.3934/mfc.2020001

A novel approach for solving skewed classification problem using cluster based ensemble method

1. 

Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India – 522502

2. 

Vellore Institute of Technology, Chennai Campus, Chennai, 600127, Tamilnadu, India

* Corresponding author: Gillala Rekha

Received  September 2019 Revised  December 2019 Published  February 2020

Fund Project: The first author is supported by KL University

In numerous real-world applications, the class imbalance problem is prevalent. When training samples of one class immensely outnumber samples of the other classes, the traditional machine learning algorithms show bias towards the majority class (a class with more number of samples) lead to significant losses of model performance. Several techniques have been proposed to handle the problem of class imbalance, including data sampling and boosting. In this paper, we present a cluster-based oversampling with boosting algorithm (Cluster+Boost) for learning from imbalanced data. We evaluate the performance of the proposed approach with state-of-the-art methods based on ensemble learning like AdaBoost, RUSBoost and SMOTEBoost. We conducted experiments on 22 data sets with various imbalance ratios. The experimental results are promising and provide an alternative approach for improving the performance of the classifier when learned on highly imbalanced data sets.

Citation: Gillala Rekha, V Krishna Reddy, Amit Kumar Tyagi. A novel approach for solving skewed classification problem using cluster based ensemble method. Mathematical Foundations of Computing, 2020, 3 (1) : 1-9. doi: 10.3934/mfc.2020001
References:
[1]

A. AliS. M. Shamsuddin and A. L. Ralescu, Classification with class imbalance problem: A review, Int J Adv Soft Comput Appl, 7 (2015), 176-204.   Google Scholar

[2]

J. Alcalá-FdezL. SánchezS. GarciaM. J. del JesusS. VenturaJ. M. GarrellJ. OteroC. RomeroJ. Bacardit and V. M. Rivas, Keel: A software tool to assess evolutionary algorithms for data mining problems, Soft Computing, 13 (2009), 307-318.   Google Scholar

[3]

C. Bunkhumpornpat, K. Sinapiromsaran and C. Lursinsap, Safe-level-smote: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem, in: Proceedings of the IEEE Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer, 5476 (2009), 475–482. doi: 10.1007/978-3-642-01307-2_43.  Google Scholar

[4]

S. BaruaM. M. IslamX. Yao and K. Murase, Mwmote–majority weighted minority oversampling technique for imbalanced data set learning, IEEE Transactions on Knowledge and Data Engineering, 26 (2014), 405-425.  doi: 10.1109/TKDE.2012.232.  Google Scholar

[5]

A. P. Bradley, The use of the area under the roc curve in the evaluation of machine learning algorithms, Pattern Recognition, 30 (1997), 1145-1159.  doi: 10.1016/S0031-3203(96)00142-2.  Google Scholar

[6]

N. V. ChawlaK. W. BowyerL. O. Hall and W. P. Kegelmeyer, Smote: Synthetic minority over-sampling technique, Journal of Artificial Intelligence Research, 16 (2002), 321-357.  doi: 10.1613/jair.953.  Google Scholar

[7]

N. V. Chawla, A. Lazarevic, L. O. Hall and K. W. Bowyer, Smoteboost: Improving prediction of the minority class in boosting, in: European Conference on Principles of Data Mining and Knowledge Discovery, Springer, 2003,107–119. doi: 10.1007/978-3-540-39804-2_12.  Google Scholar

[8]

M. GalarA. FernandezE. BarrenecheaH. Bustince and F. Herrera, A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches,, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42 (2012), 463-484.  doi: 10.1109/TSMCC.2011.2161285.  Google Scholar

[9]

V. GarcíaR. A. Mollineda and J. S. Sánchez, On the k-nn performance in a challenging scenario of imbalance and overlapping,, Pattern Analysis and Applications, 11 (2008), 269-280.  doi: 10.1007/s10044-007-0087-5.  Google Scholar

[10]

H. He, Y. Bai, E. A. Garcia and S. Li, Adasyn: Adaptive synthetic sampling approach for imbalanced learning, in: Proceedings of the IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), IEEE, 2008, 1322–1328. Google Scholar

[11]

S. Hu, Y. Liang, L. Ma and Y. He, Msmote: Improving classification performance when training data is imbalanced, in: Proceedings of the Second International Workshop on Computer Science and Engineering, IEEE, 2 (2009), 13–17. doi: 10.1109/WCSE.2009.756.  Google Scholar

[12]

H. Han, W.-Y. Wang and B.-H. Mao, Borderline-smote: A new over-sampling method in imbalanced data sets learning, in: Proceedings of the International Conference on Intelligent Computing, Springer, 2005,878–887. doi: 10.1007/11538059_91.  Google Scholar

[13]

M. Krstic and M. Bjelica, Impact of class imbalance on personalized program guide performance, IEEE Transactions on Consumer Electronics, 61 (2015), 90-95.  doi: 10.1109/TCE.2015.7064115.  Google Scholar

[14]

M. LinK. Tang and X. Yao, Dynamic sampling approach to training neural networks for multiclass imbalance classification, IEEE Transactions on Neural Networks and Learning Systems, 24 (2013), 647-660.   Google Scholar

[15]

W.-Z. Lu and D. Wang, Ground-level ozone prediction by support vector machine approach with a cost-sensitive classification scheme, Science of the Total Environment, 395 (2008), 109-116.  doi: 10.1016/j.scitotenv.2008.01.035.  Google Scholar

[16]

W.-C. LinC.-F. TsaiY.-H. Hu and J.-S. Jhang, Clustering-based undersampling in class-imbalanced data, Information Sciences, 409/410 (2017), 17-26.  doi: 10.1016/j.ins.2017.05.008.  Google Scholar

[17]

G. RekhaA. K. Tyagi and V. Krishna Reddy, A wide scale classification of class imbalance problem and its solutions: A systematic literature review,, Journal of Computer Science, 15 (2019), 886-929.  doi: 10.3844/jcssp.2019.886.929.  Google Scholar

[18]

G. RekhaA. K. Tyagi and V. Krishna Reddy, Solving class imbalance problem using bagging, boosting techniques, with and without using noise filtering method, International Journal of Hybrid Intelligent Systems, 15 (2019), 67-76.  doi: 10.3233/HIS-190261.  Google Scholar

[19]

F. Rayhan, S. Ahmed, A. Mahbub, M. Jani, S. Shatabda and D. M. Farid, et al., Cusboost: Cluster-based under-sampling with boosting for imbalanced classification, 2017 2nd International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS), (2017), arXiv1712.04356. doi: 10.1109/CSITSS.2017.8447534.  Google Scholar

[20]

S. Ruggieri, Efficient c4. 5 [classification algorithm], IEEE Transactions on Knowledge and Data Engineering, 14 (2002), 438-444.   Google Scholar

[21]

Y. SunA. K. Wong and M. S. Kamel, Classification of imbalanced data: A review,, International Journal of Pattern Recognition and Artificial Intelligence, 23 (2009), 687-719.  doi: 10.1142/S0218001409007326.  Google Scholar

[22]

C. SeiffertT. M. KhoshgoftaarJ. Van Hulse and A. Napolitano, Rusboost: A hybrid approach to alleviating class imbalance, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 40 (2010), 185-197.  doi: 10.1109/TSMCA.2009.2029559.  Google Scholar

[23]

R. C. Team, R: A language and environment for statistical computing [internet], vienna (austria): R foundation for statistical computing.[cited 2015 mar 23] (2012). Google Scholar

[24]

S. Wang and X. Yao, Diversity analysis on imbalanced data sets by using ensemble models, in: Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, IEEE, 2009,324–331. doi: 10.1109/CIDM.2009.4938667.  Google Scholar

show all references

References:
[1]

A. AliS. M. Shamsuddin and A. L. Ralescu, Classification with class imbalance problem: A review, Int J Adv Soft Comput Appl, 7 (2015), 176-204.   Google Scholar

[2]

J. Alcalá-FdezL. SánchezS. GarciaM. J. del JesusS. VenturaJ. M. GarrellJ. OteroC. RomeroJ. Bacardit and V. M. Rivas, Keel: A software tool to assess evolutionary algorithms for data mining problems, Soft Computing, 13 (2009), 307-318.   Google Scholar

[3]

C. Bunkhumpornpat, K. Sinapiromsaran and C. Lursinsap, Safe-level-smote: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem, in: Proceedings of the IEEE Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer, 5476 (2009), 475–482. doi: 10.1007/978-3-642-01307-2_43.  Google Scholar

[4]

S. BaruaM. M. IslamX. Yao and K. Murase, Mwmote–majority weighted minority oversampling technique for imbalanced data set learning, IEEE Transactions on Knowledge and Data Engineering, 26 (2014), 405-425.  doi: 10.1109/TKDE.2012.232.  Google Scholar

[5]

A. P. Bradley, The use of the area under the roc curve in the evaluation of machine learning algorithms, Pattern Recognition, 30 (1997), 1145-1159.  doi: 10.1016/S0031-3203(96)00142-2.  Google Scholar

[6]

N. V. ChawlaK. W. BowyerL. O. Hall and W. P. Kegelmeyer, Smote: Synthetic minority over-sampling technique, Journal of Artificial Intelligence Research, 16 (2002), 321-357.  doi: 10.1613/jair.953.  Google Scholar

[7]

N. V. Chawla, A. Lazarevic, L. O. Hall and K. W. Bowyer, Smoteboost: Improving prediction of the minority class in boosting, in: European Conference on Principles of Data Mining and Knowledge Discovery, Springer, 2003,107–119. doi: 10.1007/978-3-540-39804-2_12.  Google Scholar

[8]

M. GalarA. FernandezE. BarrenecheaH. Bustince and F. Herrera, A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches,, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42 (2012), 463-484.  doi: 10.1109/TSMCC.2011.2161285.  Google Scholar

[9]

V. GarcíaR. A. Mollineda and J. S. Sánchez, On the k-nn performance in a challenging scenario of imbalance and overlapping,, Pattern Analysis and Applications, 11 (2008), 269-280.  doi: 10.1007/s10044-007-0087-5.  Google Scholar

[10]

H. He, Y. Bai, E. A. Garcia and S. Li, Adasyn: Adaptive synthetic sampling approach for imbalanced learning, in: Proceedings of the IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), IEEE, 2008, 1322–1328. Google Scholar

[11]

S. Hu, Y. Liang, L. Ma and Y. He, Msmote: Improving classification performance when training data is imbalanced, in: Proceedings of the Second International Workshop on Computer Science and Engineering, IEEE, 2 (2009), 13–17. doi: 10.1109/WCSE.2009.756.  Google Scholar

[12]

H. Han, W.-Y. Wang and B.-H. Mao, Borderline-smote: A new over-sampling method in imbalanced data sets learning, in: Proceedings of the International Conference on Intelligent Computing, Springer, 2005,878–887. doi: 10.1007/11538059_91.  Google Scholar

[13]

M. Krstic and M. Bjelica, Impact of class imbalance on personalized program guide performance, IEEE Transactions on Consumer Electronics, 61 (2015), 90-95.  doi: 10.1109/TCE.2015.7064115.  Google Scholar

[14]

M. LinK. Tang and X. Yao, Dynamic sampling approach to training neural networks for multiclass imbalance classification, IEEE Transactions on Neural Networks and Learning Systems, 24 (2013), 647-660.   Google Scholar

[15]

W.-Z. Lu and D. Wang, Ground-level ozone prediction by support vector machine approach with a cost-sensitive classification scheme, Science of the Total Environment, 395 (2008), 109-116.  doi: 10.1016/j.scitotenv.2008.01.035.  Google Scholar

[16]

W.-C. LinC.-F. TsaiY.-H. Hu and J.-S. Jhang, Clustering-based undersampling in class-imbalanced data, Information Sciences, 409/410 (2017), 17-26.  doi: 10.1016/j.ins.2017.05.008.  Google Scholar

[17]

G. RekhaA. K. Tyagi and V. Krishna Reddy, A wide scale classification of class imbalance problem and its solutions: A systematic literature review,, Journal of Computer Science, 15 (2019), 886-929.  doi: 10.3844/jcssp.2019.886.929.  Google Scholar

[18]

G. RekhaA. K. Tyagi and V. Krishna Reddy, Solving class imbalance problem using bagging, boosting techniques, with and without using noise filtering method, International Journal of Hybrid Intelligent Systems, 15 (2019), 67-76.  doi: 10.3233/HIS-190261.  Google Scholar

[19]

F. Rayhan, S. Ahmed, A. Mahbub, M. Jani, S. Shatabda and D. M. Farid, et al., Cusboost: Cluster-based under-sampling with boosting for imbalanced classification, 2017 2nd International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS), (2017), arXiv1712.04356. doi: 10.1109/CSITSS.2017.8447534.  Google Scholar

[20]

S. Ruggieri, Efficient c4. 5 [classification algorithm], IEEE Transactions on Knowledge and Data Engineering, 14 (2002), 438-444.   Google Scholar

[21]

Y. SunA. K. Wong and M. S. Kamel, Classification of imbalanced data: A review,, International Journal of Pattern Recognition and Artificial Intelligence, 23 (2009), 687-719.  doi: 10.1142/S0218001409007326.  Google Scholar

[22]

C. SeiffertT. M. KhoshgoftaarJ. Van Hulse and A. Napolitano, Rusboost: A hybrid approach to alleviating class imbalance, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 40 (2010), 185-197.  doi: 10.1109/TSMCA.2009.2029559.  Google Scholar

[23]

R. C. Team, R: A language and environment for statistical computing [internet], vienna (austria): R foundation for statistical computing.[cited 2015 mar 23] (2012). Google Scholar

[24]

S. Wang and X. Yao, Diversity analysis on imbalanced data sets by using ensemble models, in: Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, IEEE, 2009,324–331. doi: 10.1109/CIDM.2009.4938667.  Google Scholar

Figure 1.  Framework of Cluster-based Oversampling with Boosting
Table 1.  Dataset Characteristics
Datasets Size # attr % IR
ecoli-0_vs_1 220 7 1.82
ecoli1 336 7 3.36
ecoli2 336 7 5.46
ecoli3 336 7 8.6
glass0 214 9 2.06
glass-0-1-2-3_vs_4-5-6 214 9 3.2
glass1 214 9 1.82
glass6 214 9 6.38
haberman 306 3 2.78
iris0 150 4 2
new-thyroid1 215 5 5.14
new-thyroid2 215 5 5.14
page-blocks0 5472 10 8.79
pima 768 8 1.87
segment0 2308 19 6.02
vehicle0 846 18 3.25
vehicle1 846 18 2.9
vehicle2 846 18 2.88
vehicle3 846 18 2.99
wisconsin 683 9 1.86
yeast1 1484 8 2.46
yeast3 1484 8 8.1
Datasets Size # attr % IR
ecoli-0_vs_1 220 7 1.82
ecoli1 336 7 3.36
ecoli2 336 7 5.46
ecoli3 336 7 8.6
glass0 214 9 2.06
glass-0-1-2-3_vs_4-5-6 214 9 3.2
glass1 214 9 1.82
glass6 214 9 6.38
haberman 306 3 2.78
iris0 150 4 2
new-thyroid1 215 5 5.14
new-thyroid2 215 5 5.14
page-blocks0 5472 10 8.79
pima 768 8 1.87
segment0 2308 19 6.02
vehicle0 846 18 3.25
vehicle1 846 18 2.9
vehicle2 846 18 2.88
vehicle3 846 18 2.99
wisconsin 683 9 1.86
yeast1 1484 8 2.46
yeast3 1484 8 8.1
Table 2.  Performances of the sampling techniques across all datasets using AUC Metric
Datasets AdaBoost RUSBoost SMOTEBoost Cluster+boost
ecoli-0_vs_1 0.6354 0.794 0.799 0.992
ecoli1 0.778 0.883 0.899 0.985
ecoli2 0.703 0.899 0.967 0.97
ecoli3 0.681 0.856 0.955 0.986
glass0 0.74 0.813 0.912 0.974
glass-0-1-2-3_vs_4-5-6 0.703 0.91 0.987 0.987
glass1 0.952 0.763 0.985 0.987
glass6 0.947 0.918 0.991 0.997
haberman 0.947 0.656 0.947 0.942
iris0 0.949 0.98 0.978 0.981
new-thyroid1 0.947 0.975 0.947 0.986
new-thyroid2 0.687 0.961 0.987 0.994
page-blocks0 0.637 0.953 0.967 0.996
pima 0.6223 0.751 0.897 0.899
segment0 0.996 0.994 0.998 0.998
vehicle0 0.943 0.965 0.968 0.978
vehicle1 0.754 0.768 0.897 0.899
vehicle2 0.854 0.966 0.967 0.978
vehicle3 0.745 0.763 0.894 0.894
wisconsin 0.9 0.96 0.994 0.894
yeast1 0.7589 0.7382 0.741 0.996
yeast3 0.93 0.944 0.944 0.994
Datasets AdaBoost RUSBoost SMOTEBoost Cluster+boost
ecoli-0_vs_1 0.6354 0.794 0.799 0.992
ecoli1 0.778 0.883 0.899 0.985
ecoli2 0.703 0.899 0.967 0.97
ecoli3 0.681 0.856 0.955 0.986
glass0 0.74 0.813 0.912 0.974
glass-0-1-2-3_vs_4-5-6 0.703 0.91 0.987 0.987
glass1 0.952 0.763 0.985 0.987
glass6 0.947 0.918 0.991 0.997
haberman 0.947 0.656 0.947 0.942
iris0 0.949 0.98 0.978 0.981
new-thyroid1 0.947 0.975 0.947 0.986
new-thyroid2 0.687 0.961 0.987 0.994
page-blocks0 0.637 0.953 0.967 0.996
pima 0.6223 0.751 0.897 0.899
segment0 0.996 0.994 0.998 0.998
vehicle0 0.943 0.965 0.968 0.978
vehicle1 0.754 0.768 0.897 0.899
vehicle2 0.854 0.966 0.967 0.978
vehicle3 0.745 0.763 0.894 0.894
wisconsin 0.9 0.96 0.994 0.894
yeast1 0.7589 0.7382 0.741 0.996
yeast3 0.93 0.944 0.944 0.994
Table 3.  Performances of the sampling techniques across all datasets using F-measure Metric
Datasets AdaBoost RUSBoost SMOTEBoost Cluster+Boost
ecoli-0_vs_1 0.632 0.795 0.799 0.995
ecoli1 0.778 0.89 0.899 0.992
ecoli2 0.71 0.899 0.967 0.986
ecoli3 0.681 0.856 0.955 0.964
glass0 0.74 0.813 0.912 0.982
glass-0-1-2-3_vs_4-5-6 0.703 0.91 0.987 0.995
glass1 0.952 0.763 0.985 0.99
glass6 0.947 0.918 0.991 0.994
haberman 0.947 0.656 0.947 0.942
iris0 0.949 0.98 0.894 0.993
new-thyroid1 0.947 0.975 0.947 0.983
new-thyroid2 0.687 0.961 0.987 0.983
page-blocks0 0.637 0.953 0.967 0.998
pima 0.6223 0.751 0.897 0.894
segment0 0.996 0.994 0.998 0.998
vehicle0 0.943 0.965 0.988 0.984
vehicle1 0.754 0.768 0.897 0.894
vehicle2 0.854 0.966 0.967 0.941
vehicle3 0.745 0.763 0.894 0.894
wisconsin 0.9 0.96 0.994 0.997
yeast1 0.7589 0.7382 0.741 0.979
yeast3 0.93 0.944 0.944 0.974
Datasets AdaBoost RUSBoost SMOTEBoost Cluster+Boost
ecoli-0_vs_1 0.632 0.795 0.799 0.995
ecoli1 0.778 0.89 0.899 0.992
ecoli2 0.71 0.899 0.967 0.986
ecoli3 0.681 0.856 0.955 0.964
glass0 0.74 0.813 0.912 0.982
glass-0-1-2-3_vs_4-5-6 0.703 0.91 0.987 0.995
glass1 0.952 0.763 0.985 0.99
glass6 0.947 0.918 0.991 0.994
haberman 0.947 0.656 0.947 0.942
iris0 0.949 0.98 0.894 0.993
new-thyroid1 0.947 0.975 0.947 0.983
new-thyroid2 0.687 0.961 0.987 0.983
page-blocks0 0.637 0.953 0.967 0.998
pima 0.6223 0.751 0.897 0.894
segment0 0.996 0.994 0.998 0.998
vehicle0 0.943 0.965 0.988 0.984
vehicle1 0.754 0.768 0.897 0.894
vehicle2 0.854 0.966 0.967 0.941
vehicle3 0.745 0.763 0.894 0.894
wisconsin 0.9 0.96 0.994 0.997
yeast1 0.7589 0.7382 0.741 0.979
yeast3 0.93 0.944 0.944 0.974
[1]

Yuyuan Ouyang, Trevor Squires. Some worst-case datasets of deterministic first-order methods for solving binary logistic regression. Inverse Problems & Imaging, 2021, 15 (1) : 63-77. doi: 10.3934/ipi.2020047

[2]

Akbar Mahmoodi Rishakani, Seyed Mojtaba Dehnavi, Mohmmadreza Mirzaee Shamsabad, Nasour Bagheri. Cryptographic properties of cyclic binary matrices. Advances in Mathematics of Communications, 2021, 15 (2) : 311-327. doi: 10.3934/amc.2020068

[3]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[4]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020, 2 (4) : 351-390. doi: 10.3934/fods.2020017

[5]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[6]

Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133

[7]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[8]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281

[9]

Geir Evensen, Javier Amezcua, Marc Bocquet, Alberto Carrassi, Alban Farchi, Alison Fowler, Pieter L. Houtekamer, Christopher K. Jones, Rafael J. de Moraes, Manuel Pulido, Christian Sampson, Femke C. Vossepoel. An international initiative of predicting the SARS-CoV-2 pandemic using ensemble data assimilation. Foundations of Data Science, 2020  doi: 10.3934/fods.2021001

[10]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[11]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[12]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[13]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[14]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[15]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[16]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[17]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[18]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[19]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[20]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

 Impact Factor: 

Metrics

  • PDF downloads (219)
  • HTML views (419)
  • Cited by (0)

[Back to Top]