February  2020, 3(1): 11-24. doi: 10.3934/mfc.2020002

Orbital stability of periodic traveling wave solutions to the coupled compound KdV and MKdV equations with two components

School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong, China

* Corresponding author: Xiaoxiao Zheng

Received  December 2019 Published  February 2020

Fund Project: The first author is supported by the Natural Science Foundation of Shandong Province (No. ZR2018BA016), the second author is supported by the National Natural Science Foundation of China (No. 11801306)

In this article, the authors consider the orbital stability of periodic traveling wave solutions for the coupled compound KdV and MKdV equations with two components
$ \begin{equation*} \left\{ \begin{aligned} &u_{t}+vv_{x}+\beta u^{2}u_{x}+u_{xxx}-uu_{x} = 0, \ \ \beta>0, \\ &v_{t}+(uv)_{x}+2vv_{x} = 0, \end{aligned} \right. \end{equation*} $
Firstly, we show that there exist a smooth curve of positive traveling wave solutions of dnoidal type with a fixed fundamental period
$ L $
for the coupled compound KdV and MKdV equations. Then, combining the orbital stability theory presented by Grillakis et al., and detailed spectral analysis given by using Lamé equation and Floquet theory, we show that the dnoidal type periodic wave solution with period
$ L $
is orbitally stable. As the modulus of the Jacobian elliptic function
$ k\rightarrow 1 $
, we obtain the orbital stability results of solitary wave solution with zero asymptotic value for the coupled compound KdV and MKdV equations from our work. In addition, we also obtain the stability results for the coupled compound KdV and MKdV equations with the degenerate condition
$ v = 0 $
, called the compound KdV and MKdV equation.
Citation: Xiaoxiao Zheng, Hui Wu. Orbital stability of periodic traveling wave solutions to the coupled compound KdV and MKdV equations with two components. Mathematical Foundations of Computing, 2020, 3 (1) : 11-24. doi: 10.3934/mfc.2020002
References:
[1]

J. Angulo, Stability of cnoidal waves to Hirota-Satsuma systems, Matemática Contemporânea, 27 (2004), 189–223.

[2]

J. Angulo, Stability of dnoidal waves to Hirota-Satsuma system, Differential Integral Equations, 18 (2005), 611-645. 

[3]

P. Byrd and M. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists 2nd edn, New York: Springer, 1971.

[4]

Q. R. Chowdhury and R. Mukherjee, On the complete integrability of the Hirota Satsuma, Journal of Physics A: Mathematical and General, 17 (1977), 231-234.  doi: 10.1088/0305-4470/17/5/002.

[5]

S. Q. Dai, Solitary wave at the interface of a two-layer fluid, Applied Mathematics and Mechanics, 3 (1982), 721-731. 

[6]

S. Q. DaiG. F. Sigalov and A. V. Diogenov, Approximate analytical solutions for some strong nonlinear problems, Science in China Series A, 33 (1990), 843-853. 

[7]

C. Guha-Roy, Solitary wave solutions of a system of coupued nonlinear equation, J. Math. Phys., 28 (1987), 2087-2088.  doi: 10.1063/1.527419.

[8]

C. Guha-Roy, Exact solutions to a coupled nonlinear equation, Inter. J. Theor. Phys., 27 (1988), 447-450. 

[9]

C. Guha-Roy, On explicit solutions of a coupled KdV-mKdV equation, Internat. J. Modern Phys. B, 3 (1989), 871-875.  doi: 10.1142/S0217979289000646.

[10]

B. L. Guo and L. Chen, Orbital stability of solitary waves of coupled KdV equations, Differential and Integral Equations, 12 (1999), 295-308. 

[11]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I, Journal of Functional Analysis, 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.

[12]

B. L. Guo and S. B. Tan, Global smooth solution for coupled nonlinear wave equations, Mathematical Methods in the Applied Sciences, 14 (1991), 419-425.  doi: 10.1002/mma.1670140606.

[13]

W. P. Hong, New types of solitary-wave solutions from the combined KdV-mKdV equation, Nuovo Cimento Della Società Italiana Di Fisica B, 115 (2000), 117-118. 

[14]

R. Hirota and J. Satsuma, Soliton solutions of a coupled Korteweg-de Vries equation, Physics Letters A, 85 (1981), 407-408.  doi: 10.1016/0375-9601(81)90423-0.

[15]

R. J. Iorio and V. Iorio, Fourier Analysis and Partial Differential Equations, Cambridge Studies in Advanced Mathematics, vol 70, Cambridge: Cambridge University Press, 2001.

[16]

E. L. Ince, The periodic Lam$\acute{e}$ functions, Proceedings of the Royal Society of Edinburgh, 60 (1940), 47-63.  doi: 10.1017/S0370164600020058.

[17]

S. Y. Lou and L. L. Chen, Solitary wave solutions and cnoidal wave solutions to the combined KdV and MKdV equation, Mathematical Methods in the Applied Sciences, 17 (1994), 339-347.  doi: 10.1002/mma.1670170503.

[18]

W. Magnus and S. Winkler, Hill's Equation, Tracts in Pure and Appliled Mathematics, vol. 20, Wiley, New York, 1966.

[19]

V. Narayanamurti and C. M. Varma, Nonlinear propagation of heat pulses in solids, Physical Review Letters, 25 (1970), 1105-1108. 

[20]

M. Toda, Waves in nonlinear lattice, Progress of Theoretical Physics Supplement, 45 (1970), 174-200. 

[21]

W. G. ZhangG. L. Shi and Y. H. Qin, Orbital stability of solitary waves for the, Nonlinear Analysis: Real World Applications, 12 (2011), 1627-1639.  doi: 10.1016/j.nonrwa.2010.10.017.

[22]

X. X. ZhengY. D. Shang and X. M. Peng, Orbital stability of periodic traveling wave solutions to the generalized Zakharov equations, Acta Math. Sci., 37 (2017), 998-1018.  doi: 10.1016/S0252-9602(17)30054-1.

show all references

References:
[1]

J. Angulo, Stability of cnoidal waves to Hirota-Satsuma systems, Matemática Contemporânea, 27 (2004), 189–223.

[2]

J. Angulo, Stability of dnoidal waves to Hirota-Satsuma system, Differential Integral Equations, 18 (2005), 611-645. 

[3]

P. Byrd and M. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists 2nd edn, New York: Springer, 1971.

[4]

Q. R. Chowdhury and R. Mukherjee, On the complete integrability of the Hirota Satsuma, Journal of Physics A: Mathematical and General, 17 (1977), 231-234.  doi: 10.1088/0305-4470/17/5/002.

[5]

S. Q. Dai, Solitary wave at the interface of a two-layer fluid, Applied Mathematics and Mechanics, 3 (1982), 721-731. 

[6]

S. Q. DaiG. F. Sigalov and A. V. Diogenov, Approximate analytical solutions for some strong nonlinear problems, Science in China Series A, 33 (1990), 843-853. 

[7]

C. Guha-Roy, Solitary wave solutions of a system of coupued nonlinear equation, J. Math. Phys., 28 (1987), 2087-2088.  doi: 10.1063/1.527419.

[8]

C. Guha-Roy, Exact solutions to a coupled nonlinear equation, Inter. J. Theor. Phys., 27 (1988), 447-450. 

[9]

C. Guha-Roy, On explicit solutions of a coupled KdV-mKdV equation, Internat. J. Modern Phys. B, 3 (1989), 871-875.  doi: 10.1142/S0217979289000646.

[10]

B. L. Guo and L. Chen, Orbital stability of solitary waves of coupled KdV equations, Differential and Integral Equations, 12 (1999), 295-308. 

[11]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I, Journal of Functional Analysis, 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.

[12]

B. L. Guo and S. B. Tan, Global smooth solution for coupled nonlinear wave equations, Mathematical Methods in the Applied Sciences, 14 (1991), 419-425.  doi: 10.1002/mma.1670140606.

[13]

W. P. Hong, New types of solitary-wave solutions from the combined KdV-mKdV equation, Nuovo Cimento Della Società Italiana Di Fisica B, 115 (2000), 117-118. 

[14]

R. Hirota and J. Satsuma, Soliton solutions of a coupled Korteweg-de Vries equation, Physics Letters A, 85 (1981), 407-408.  doi: 10.1016/0375-9601(81)90423-0.

[15]

R. J. Iorio and V. Iorio, Fourier Analysis and Partial Differential Equations, Cambridge Studies in Advanced Mathematics, vol 70, Cambridge: Cambridge University Press, 2001.

[16]

E. L. Ince, The periodic Lam$\acute{e}$ functions, Proceedings of the Royal Society of Edinburgh, 60 (1940), 47-63.  doi: 10.1017/S0370164600020058.

[17]

S. Y. Lou and L. L. Chen, Solitary wave solutions and cnoidal wave solutions to the combined KdV and MKdV equation, Mathematical Methods in the Applied Sciences, 17 (1994), 339-347.  doi: 10.1002/mma.1670170503.

[18]

W. Magnus and S. Winkler, Hill's Equation, Tracts in Pure and Appliled Mathematics, vol. 20, Wiley, New York, 1966.

[19]

V. Narayanamurti and C. M. Varma, Nonlinear propagation of heat pulses in solids, Physical Review Letters, 25 (1970), 1105-1108. 

[20]

M. Toda, Waves in nonlinear lattice, Progress of Theoretical Physics Supplement, 45 (1970), 174-200. 

[21]

W. G. ZhangG. L. Shi and Y. H. Qin, Orbital stability of solitary waves for the, Nonlinear Analysis: Real World Applications, 12 (2011), 1627-1639.  doi: 10.1016/j.nonrwa.2010.10.017.

[22]

X. X. ZhengY. D. Shang and X. M. Peng, Orbital stability of periodic traveling wave solutions to the generalized Zakharov equations, Acta Math. Sci., 37 (2017), 998-1018.  doi: 10.1016/S0252-9602(17)30054-1.

[1]

Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure and Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141

[2]

Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221

[3]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[4]

Giovana Alves, Fábio Natali. Periodic waves for the cubic-quintic nonlinear Schrodinger equation: Existence and orbital stability. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022101

[5]

Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993

[6]

Fengxin Chen. Stability and uniqueness of traveling waves for system of nonlocal evolution equations with bistable nonlinearity. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 659-673. doi: 10.3934/dcds.2009.24.659

[7]

Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789

[8]

Yuqian Zhou, Qian Liu. Reduction and bifurcation of traveling waves of the KdV-Burgers-Kuramoto equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 2057-2071. doi: 10.3934/dcdsb.2016036

[9]

Felipe Linares, M. Panthee. On the Cauchy problem for a coupled system of KdV equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 417-431. doi: 10.3934/cpaa.2004.3.417

[10]

Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang, Tohru Ozawa. On the orbital stability of fractional Schrödinger equations. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1267-1282. doi: 10.3934/cpaa.2014.13.1267

[11]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[12]

Hua Chen, Ling-Jun Wang. A perturbation approach for the transverse spectral stability of small periodic traveling waves of the ZK equation. Kinetic and Related Models, 2012, 5 (2) : 261-281. doi: 10.3934/krm.2012.5.261

[13]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[14]

Aiyong Chen, Xinhui Lu. Orbital stability of elliptic periodic peakons for the modified Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1703-1735. doi: 10.3934/dcds.2020090

[15]

Byungsoo Moon. Orbital stability of periodic peakons for the generalized modified Camassa-Holm equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4409-4437. doi: 10.3934/dcdss.2021123

[16]

Guangyu Zhao. Multidimensional periodic traveling waves in infinite cylinders. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 1025-1045. doi: 10.3934/dcds.2009.24.1025

[17]

Guy Métivier, Kevin Zumbrun. Large-amplitude modulation of periodic traveling waves. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022070

[18]

Nar Rawal, Wenxian Shen, Aijun Zhang. Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1609-1640. doi: 10.3934/dcds.2015.35.1609

[19]

Judith R. Miller, Huihui Zeng. Multidimensional stability of planar traveling waves for an integrodifference model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 741-751. doi: 10.3934/dcdsb.2013.18.741

[20]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

 Impact Factor: 

Metrics

  • PDF downloads (331)
  • HTML views (548)
  • Cited by (0)

Other articles
by authors

[Back to Top]