February  2020, 3(1): 51-64. doi: 10.3934/mfc.2020005

An improved deep convolutional neural network model with kernel loss function in image classification

1. 

Key Laboratory of Education Informatization for Nationalities, Ministry of Education, Yunnan Normal University, Kunming 650500, China

2. 

School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China

* Corresponding author: Tianwei Xu

Received  December 2019 Revised  December 2019 Published  February 2020

Fund Project: This work is supported by National Natural Science Foundation of China (No. 61862068)

To further enhance the performance of the current convolutional neural network, an improved deep convolutional neural network model is shown in this paper. Different from the traditional network structure, in our proposed method the pooling layer is replaced by two continuous convolutional layers with $ 3 \times 3 $ convolution kernel between which a dropout layer is added to reduce overfitting, and cross entropy kernel is used as loss function. Experimental results on Mnist and Cifar-10 data sets for image classification show that, compared to several classical neural networks such as Alexnet, VGGNet and GoogleNet, the improved network achieve better performance in learning efficiency and recognition accuracy at relatively shallow network depths.

Citation: Yuantian Xia, Juxiang Zhou, Tianwei Xu, Wei Gao. An improved deep convolutional neural network model with kernel loss function in image classification. Mathematical Foundations of Computing, 2020, 3 (1) : 51-64. doi: 10.3934/mfc.2020005
References:
[1]

M. Abadi, A. Agarwal and P. Barham, et al., TensorFlow: Large-scale machine learning on heterogeneous distributed systems[J], arXiv preprint, arXiv: 1603.04467, 2016.

[2]

Z. AnS. Li and J. Wang, Generalization of deep neural network for bearing fault diagnosis under different working conditions using multiple kernel method,, Neurocomputing, 352 (2019), 42-53.  doi: 10.1016/j.neucom.2019.04.010.

[3]

V. BadrinarayananA. Kendall and R. Cipolla, SegNet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 39 (2017), 2481-2495.  doi: 10.1109/TPAMI.2016.2644615.

[4]

C. K. ChuiS. B. Lin and D. X. Zhou, Deep neural networks for rotation-invariance approximation and learning, Anal. Appl., 17 (2019), 737-772.  doi: 10.1142/S0219530519400074.

[5]

M. Courbariaux, I. Hubara and D. Soudry, et al., Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or -1[J], arXiv preprint, arXiv: 1602.02830, 2016.

[6]

K. He, X. Zhang and S. Ren, et al., Delving deep into rectifiers: Surpassing human-level performance on imaget classification, Proceeding of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, Publisher: IEEE, 2015, 1026–1034. doi: 10.1109/ICCV.2015.123.

[7]

K. He, X. Zhang, S. Ren, et al., Deep residual learning for image recognition, Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA, Publisher: IEEE, 2016,770–778. doi: 10.1109/CVPR.2016.90.

[8]

M. HeydariE. Shivanian and B. Azarnavid, An iterative multistep kernel based method for nonlinear Volterra integral and integro-differential equations of fractional order, J. Comput. Appl. Math., 361 (2019), 97-112.  doi: 10.1016/j.cam.2019.04.017.

[9]

G. Huang, Z. Liu and L. V. D. Maaten, et al., Densely connected convolutional networks, IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, Publisher: IEEE, 2017, 2261–2269. doi: 10.1109/CVPR.2017.243.

[10]

Y. JiangZ. Liang and H. Gao, An improved constraint-based Bayesian network learning method using Gaussian kernel probability density estimator, Expert Syst. Appl., 113 (2018), 544-554.  doi: 10.1016/j.eswa.2018.06.058.

[11]

A. KrizhevskyI. Sutskever and G. Hinton, ImageNet classification with deep convolutional neural networks, Commun. ACM, 60 (2017), 84-90.  doi: 10.1145/3065386.

[12]

Y. LecunL. Bottou and Y. Bengio, Gradient-based learning applied to document recognition,, Proceedings of the IEEE, 86 (1998), 2278-2324.  doi: 10.1109/5.726791.

[13]

Y. LecunY. Bengio and G. Hinton, Deep learning, Nature, 521 (2015), 436-444. 

[14]

Y. Lei and D. X. Zhou, Convergence of online mirror descent, Appl. Comput. Harmon. Anal., 48 (2020), 343-373.  doi: 10.1016/j.acha.2018.05.005.

[15]

S. B. Lin and D. X. Zhou, Optimal learning rates for kernel partial least squares, J. Fourier Anal. Appl., 24 (2018), 908-933.  doi: 10.1007/s00041-017-9544-8.

[16]

J. Niu, L. X. Sun and M. Q. Xu, et al., A reproducing kernel method for solving heat conduction equations with delay,, Appl. Math. Lett., 100 (2020), 106036, 7 pp. doi: 10.1016/j.aml.2019.106036.

[17]

Y. QuL. Lin and P. Shen, Joint hierarchical category structure learning and large-scale image classification, IEEE Trans. Image Process., 26 (2017), 4331-4346.  doi: 10.1109/TIP.2016.2615423.

[18]

A. Radford, L. Metz and S. Chintala, Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[J], arXiv preprint, arXiv: 1511.06434, 2015.

[19]

K. Roushangar and S. Shahnazi, Bed load prediction in gravel-bed rivers using wavelet kernel extreme learning machine and meta-heuristic methods, Int. J. Environ. Sci. Te., 16 (2019), 8197-8208.  doi: 10.1007/s13762-019-02287-6.

[20]

K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition[J]., arXiv preprint, arXiv: 1409.1556, 2015.

[21]

N. SrivastavaG. Hinton and A. Krizhevsky, Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res., 15 (2014), 1929-1958. 

[22]

C. Szegedy, W. Liu and Y. Jia, et al., Going deeper with convolutions, Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, Publisher: IEEE, 2015. doi: 10.1109/CVPR.2015.7298594.

[23]

D. X. Zhou, Universality of deep convolutional neural networks, Appl. Comput. Harmon. Anal., 48 (2020), 787-794.  doi: 10.1016/j.acha.2019.06.004.

[24]

D. X. Zhou, Theory of deep convolutional neural networks: Downsampling, Neural Networks, 124 (2020), 319-327.  doi: 10.1016/j.neunet.2020.01.018.

show all references

References:
[1]

M. Abadi, A. Agarwal and P. Barham, et al., TensorFlow: Large-scale machine learning on heterogeneous distributed systems[J], arXiv preprint, arXiv: 1603.04467, 2016.

[2]

Z. AnS. Li and J. Wang, Generalization of deep neural network for bearing fault diagnosis under different working conditions using multiple kernel method,, Neurocomputing, 352 (2019), 42-53.  doi: 10.1016/j.neucom.2019.04.010.

[3]

V. BadrinarayananA. Kendall and R. Cipolla, SegNet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 39 (2017), 2481-2495.  doi: 10.1109/TPAMI.2016.2644615.

[4]

C. K. ChuiS. B. Lin and D. X. Zhou, Deep neural networks for rotation-invariance approximation and learning, Anal. Appl., 17 (2019), 737-772.  doi: 10.1142/S0219530519400074.

[5]

M. Courbariaux, I. Hubara and D. Soudry, et al., Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or -1[J], arXiv preprint, arXiv: 1602.02830, 2016.

[6]

K. He, X. Zhang and S. Ren, et al., Delving deep into rectifiers: Surpassing human-level performance on imaget classification, Proceeding of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, Publisher: IEEE, 2015, 1026–1034. doi: 10.1109/ICCV.2015.123.

[7]

K. He, X. Zhang, S. Ren, et al., Deep residual learning for image recognition, Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA, Publisher: IEEE, 2016,770–778. doi: 10.1109/CVPR.2016.90.

[8]

M. HeydariE. Shivanian and B. Azarnavid, An iterative multistep kernel based method for nonlinear Volterra integral and integro-differential equations of fractional order, J. Comput. Appl. Math., 361 (2019), 97-112.  doi: 10.1016/j.cam.2019.04.017.

[9]

G. Huang, Z. Liu and L. V. D. Maaten, et al., Densely connected convolutional networks, IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, Publisher: IEEE, 2017, 2261–2269. doi: 10.1109/CVPR.2017.243.

[10]

Y. JiangZ. Liang and H. Gao, An improved constraint-based Bayesian network learning method using Gaussian kernel probability density estimator, Expert Syst. Appl., 113 (2018), 544-554.  doi: 10.1016/j.eswa.2018.06.058.

[11]

A. KrizhevskyI. Sutskever and G. Hinton, ImageNet classification with deep convolutional neural networks, Commun. ACM, 60 (2017), 84-90.  doi: 10.1145/3065386.

[12]

Y. LecunL. Bottou and Y. Bengio, Gradient-based learning applied to document recognition,, Proceedings of the IEEE, 86 (1998), 2278-2324.  doi: 10.1109/5.726791.

[13]

Y. LecunY. Bengio and G. Hinton, Deep learning, Nature, 521 (2015), 436-444. 

[14]

Y. Lei and D. X. Zhou, Convergence of online mirror descent, Appl. Comput. Harmon. Anal., 48 (2020), 343-373.  doi: 10.1016/j.acha.2018.05.005.

[15]

S. B. Lin and D. X. Zhou, Optimal learning rates for kernel partial least squares, J. Fourier Anal. Appl., 24 (2018), 908-933.  doi: 10.1007/s00041-017-9544-8.

[16]

J. Niu, L. X. Sun and M. Q. Xu, et al., A reproducing kernel method for solving heat conduction equations with delay,, Appl. Math. Lett., 100 (2020), 106036, 7 pp. doi: 10.1016/j.aml.2019.106036.

[17]

Y. QuL. Lin and P. Shen, Joint hierarchical category structure learning and large-scale image classification, IEEE Trans. Image Process., 26 (2017), 4331-4346.  doi: 10.1109/TIP.2016.2615423.

[18]

A. Radford, L. Metz and S. Chintala, Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[J], arXiv preprint, arXiv: 1511.06434, 2015.

[19]

K. Roushangar and S. Shahnazi, Bed load prediction in gravel-bed rivers using wavelet kernel extreme learning machine and meta-heuristic methods, Int. J. Environ. Sci. Te., 16 (2019), 8197-8208.  doi: 10.1007/s13762-019-02287-6.

[20]

K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition[J]., arXiv preprint, arXiv: 1409.1556, 2015.

[21]

N. SrivastavaG. Hinton and A. Krizhevsky, Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res., 15 (2014), 1929-1958. 

[22]

C. Szegedy, W. Liu and Y. Jia, et al., Going deeper with convolutions, Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, Publisher: IEEE, 2015. doi: 10.1109/CVPR.2015.7298594.

[23]

D. X. Zhou, Universality of deep convolutional neural networks, Appl. Comput. Harmon. Anal., 48 (2020), 787-794.  doi: 10.1016/j.acha.2019.06.004.

[24]

D. X. Zhou, Theory of deep convolutional neural networks: Downsampling, Neural Networks, 124 (2020), 319-327.  doi: 10.1016/j.neunet.2020.01.018.

Figure 1.  Mini-network replacing the $ 3 \times 3 $ convolutions
Figure 2.  kernel size: $ 3 \times 3 $, stride: 2
Figure 3.  Max pooling operation, kernel size: $ 4\times 4 $, stride: 2
Figure 4.  Dropout workflow
Figure 5.  The improved network structure
Figure 6.  The curve of recognition accuracy of Alexnet network and improved network with the training times on cifar-10
Figure 7.  The curve of recognition accuracy of VGGNet and improved network with the training times on cifar-10
Figure 8.  The curve of recognition accuracy of Google network and improved network with the training times on cifar-10
Figure 9.  The curve of recognition accuracy of Alexnet network and improved network with the training times on Minist
Figure 10.  The curve of recognition accuracy of VGGNet and improved network with the training times on Minist
Figure 11.  The curve of recognition accuracy of GoogleNet network and improved network with the training times on Mnist
Table 1.   
Parameters Value
CPU: Intel core i9-9900k
GPU: NVIDIA GeForce RTX 2080ti
RAM: 16.0 GB
OS: WIN10 64-bit
Develop software: Python3.7 + TensorFlow framework (GPU mode)
Parameters Value
CPU: Intel core i9-9900k
GPU: NVIDIA GeForce RTX 2080ti
RAM: 16.0 GB
OS: WIN10 64-bit
Develop software: Python3.7 + TensorFlow framework (GPU mode)
Table 2.   
Network Cifar Mnist
Alexnet: train acc:0.95, test acc:0.78 train acc:0.98, test acc:0.97
VGGNet: train acc:0.98, test acc:0.83 train acc:0.99, test acc:0.98
Google network: train acc:1.0, test acc:0.90 train acc:1.0, test acc:1.0
Improve network: train acc:1.0, test acc:0.94 train acc:1.0, test acc:1.0
Network Cifar Mnist
Alexnet: train acc:0.95, test acc:0.78 train acc:0.98, test acc:0.97
VGGNet: train acc:0.98, test acc:0.83 train acc:0.99, test acc:0.98
Google network: train acc:1.0, test acc:0.90 train acc:1.0, test acc:1.0
Improve network: train acc:1.0, test acc:0.94 train acc:1.0, test acc:1.0
[1]

Zhuwei Qin, Fuxun Yu, Chenchen Liu, Xiang Chen. How convolutional neural networks see the world --- A survey of convolutional neural network visualization methods. Mathematical Foundations of Computing, 2018, 1 (2) : 149-180. doi: 10.3934/mfc.2018008

[2]

Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060

[3]

Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Stability of the dynamics of an asymmetric neural network. Communications on Pure and Applied Analysis, 2009, 8 (2) : 655-671. doi: 10.3934/cpaa.2009.8.655

[4]

Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems and Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049

[5]

Yang Mi, Kang Zheng, Song Wang. Homography estimation along short videos by recurrent convolutional regression network. Mathematical Foundations of Computing, 2020, 3 (2) : 125-140. doi: 10.3934/mfc.2020014

[6]

Wenzhong Zhu, Huanlong Jiang, Erli Wang, Yani Hou, Lidong Xian, Joyati Debnath. X-ray image global enhancement algorithm in medical image classification. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1297-1309. doi: 10.3934/dcdss.2019089

[7]

Ndolane Sene. Fractional input stability and its application to neural network. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 853-865. doi: 10.3934/dcdss.2020049

[8]

Ying Sue Huang, Chai Wah Wu. Stability of cellular neural network with small delays. Conference Publications, 2005, 2005 (Special) : 420-426. doi: 10.3934/proc.2005.2005.420

[9]

King Hann Lim, Hong Hui Tan, Hendra G. Harno. Approximate greatest descent in neural network optimization. Numerical Algebra, Control and Optimization, 2018, 8 (3) : 327-336. doi: 10.3934/naco.2018021

[10]

Shyan-Shiou Chen, Chih-Wen Shih. Asymptotic behaviors in a transiently chaotic neural network. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 805-826. doi: 10.3934/dcds.2004.10.805

[11]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems and Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[12]

Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019

[13]

Ying Zhang, Xuhua Ren, Bryan Alexander Clifford, Qian Wang, Xiaoqun Zhang. Image fusion network for dual-modal restoration. Inverse Problems and Imaging, 2021, 15 (6) : 1409-1419. doi: 10.3934/ipi.2021067

[14]

Zbigniew Gomolka, Boguslaw Twarog, Jacek Bartman. Improvement of image processing by using homogeneous neural networks with fractional derivatives theorem. Conference Publications, 2011, 2011 (Special) : 505-514. doi: 10.3934/proc.2011.2011.505

[15]

Samuel Amstutz, Antonio André Novotny, Nicolas Van Goethem. Minimal partitions and image classification using a gradient-free perimeter approximation. Inverse Problems and Imaging, 2014, 8 (2) : 361-387. doi: 10.3934/ipi.2014.8.361

[16]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[17]

Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial and Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645

[18]

Yixin Guo, Aijun Zhang. Existence and nonexistence of traveling pulses in a lateral inhibition neural network. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1729-1755. doi: 10.3934/dcdsb.2016020

[19]

Jianhong Wu, Ruyuan Zhang. A simple delayed neural network with large capacity for associative memory. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 851-863. doi: 10.3934/dcdsb.2004.4.851

[20]

Weishi Yin, Jiawei Ge, Pinchao Meng, Fuheng Qu. A neural network method for the inverse scattering problem of impenetrable cavities. Electronic Research Archive, 2020, 28 (2) : 1123-1142. doi: 10.3934/era.2020062

 Impact Factor: 

Metrics

  • PDF downloads (359)
  • HTML views (573)
  • Cited by (0)

Other articles
by authors

[Back to Top]