May  2020, 3(2): 81-99. doi: 10.3934/mfc.2020007

A triple mode robust sliding mode controller for a nonlinear system with measurement noise and uncertainty

College of Engineering, Department of Electrical Engineering, TAIF University KSA, TAIF, KSA

* Corresponding author: NasimUllah

Received  December 2019 Revised  January 2020 Published  May 2020

This research work proposes a novel triple mode sliding mode controller for a nonlinear system with measurement noise and uncertainty. The proposed control has the following goals (1) it ensures the transient and steady state robustness of the system in closed loop (2) it reduces chattering in the control signal with measurement noise. Fuzzy system is used to tune the appropriate order of the fractional operators for the proposed control system. Depending on the tuned range of the fractional operators, the proposed controller can operate effectively in the following three modes (1) classical sliding mode (SMC) (2) fractional order sliding mode (FSMC) (3) Integral sliding mode control (ISMC). With the noisy feedback, the performance of the classical SMC and SMC with boundary layer degrades significantly while ISMC shows better performance. However ISMC exhibits large transient overshoots.The proposed control method optimally selects the appropriate mode of the controller to ensure performance(transient and steady state) and suppresses the effect of noisy feedback. The proposed scheme is derived for the permanent magnet synchronous motor, s (PMSM) speed regulation problem which is subject to uncertainties, measurement noise and un-modeled dynamics as a case study. The effectiveness of proposed scheme is verified using numerical simulations.

Citation: Nasim Ullah, Ahmad Aziz Al-Ahmadi. A triple mode robust sliding mode controller for a nonlinear system with measurement noise and uncertainty. Mathematical Foundations of Computing, 2020, 3 (2) : 81-99. doi: 10.3934/mfc.2020007
References:
[1]

M. P. Aghababa, A Lyapunov-based control scheme for robust stabilization of fractional chaotic systems, Nonlinear Dynam., 78 (2014), 2129-2140.  doi: 10.1007/s11071-014-1594-8.  Google Scholar

[2]

M. Asghar and N. Ullah, Performance comparison of wind turbine based doubly fed induction generator system using fault tolerant fractional and integer order controllers, Renewable Energy, 116 (2018), 244-264.  doi: 10.1016/j.renene.2017.01.008.  Google Scholar

[3]

J. Bai and X.-C. Feng, Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Process., 16 (2007), 2492-2502.  doi: 10.1109/TIP.2007.904971.  Google Scholar

[4]

G. BartoliniA. Ferrara and E. Usai, Chattering avoidance by second-order sliding mode control, IEEE Trans. Automat. Control, 43 (1998), 241-246.  doi: 10.1109/9.661074.  Google Scholar

[5]

A. BoulkrouneA. BouzeribaS. Hamel and T. Bouden, Adaptive fuzzy control-based projective synchronization of uncertain nonaffine chaotic systems, Complexity, 21 (2015), 180-192.  doi: 10.1002/cplx.21596.  Google Scholar

[6]

B. ChenX. LiuK. Liu and C. Lin, Direct adaptive fuzzy control of nonlinear strict-feedback systems, Automatica J. IFAC, 45 (2009), 1530-1535.  doi: 10.1016/j.automatica.2009.02.025.  Google Scholar

[7]

X. ChenS. TsuruokaT. Fukuda and T. Hori, Disturbance identification and its application for MIMO systems, IFAC Proceedings Volumes, 30 (1997), 1305-1310.  doi: 10.1016/S1474-6670(17)43022-9.  Google Scholar

[8]

M.-S. Chen and M.-L. Tseng, A new design for noise-induced chattering reduction in sliding mode control, in Sliding Mode Control, 24, IntechOpen, Rijeka, (2011), 461–472. doi: 10.5772/15507.  Google Scholar

[9]

W. Chen and Z. Zhang, Globally stable adaptive backstepping fuzzy control for output-feedback systems with unknown high-frequency gain sign, Fuzzy Sets and Systems, 161 (2010), 821-836.  doi: 10.1016/j.fss.2009.10.026.  Google Scholar

[10]

W. ChenL. JiaoR. Li and J. Li, Adaptive backstepping fuzzy control for nonlinearly parameterized systems with periodic disturbances, IEEE Transactions on Fuzzy Systems, 18 (2010), 674-685.  doi: 10.1109/TFUZZ.2010.2046329.  Google Scholar

[11]

S. Dadras and H. R. Momeni, Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 367-377.  doi: 10.1016/j.cnsns.2011.04.032.  Google Scholar

[12]

H. Delavari, R. Ghaderi, A. N. Ranjbar, S. H. Hosseinnia and S. Momani, Adaptive fractional PID controller for robot manipulator, in Proceedings of FDA'10. The 4th IFAC Workshop Fractional Differentiation and its Applications, Badajoz, Spain, (2010), 1–7. Google Scholar

[13]

H. F. HoY. K. Wong and A. B. Rad, Adaptive fuzzy sliding mode control with chattering elimination for nonlinear SISO systems, Simulation Modeling Practice and Theory, 17 (2009), 1199-1210.  doi: 10.1016/j.simpat.2009.04.004.  Google Scholar

[14]

A. KawamuraH. Itoh and K. Sakamoto, Chattering reduction of disturbance observer based sliding mode control, IEEE Transactions on Industry Applications, 30 (1994), 456-461.  doi: 10.1109/28.287509.  Google Scholar

[15]

G. LaiZ. LiuY. ZhangC. L. P. ChenS. Xie and Y. Liu, Fuzzy adaptive inverse compensation method to tracking control of uncertain nonlinear systems with generalized actuator dead zone, IEEE Transactions on Fuzzy Systems, 25 (2017), 191-204.  doi: 10.1109/TFUZZ.2016.2554152.  Google Scholar

[16]

Y. Luo and Y. Q. Chen, Fractional Order Motion Controls, John Wiley & Sons, 2012. doi: 10.1002/9781118387726.  Google Scholar

[17]

D. Matignon, Stability properties for generalized fractional differential systems, ESAIM: Proc., 5 (1998), 145-158.  doi: 10.1051/proc:1998004.  Google Scholar

[18]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley-Interscience, John Wiley & Sons, Inc., New York, 1993.  Google Scholar

[19]

A. OustaloupX. Mreau and M Nouillant, The CRONE suspension, Control Engineering Practice, 4 (1996), 1101-1108.  doi: 10.1016/0967-0661(96)00109-8.  Google Scholar

[20]

I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.  Google Scholar

[21]

A. Rhif, Stabilizing sliding mode control design and application for a DC motor: Speed control, CoRR, 2 (2012), 39-48.  doi: 10.5121/ijics.2012.2104.  Google Scholar

[22]

S. Seshagiri and H. K. Khalil, Robust output feedback regulation of minimum-phase nonlinear systems using conditional integrators, Automatica J. IFAC, 41 (2005), 43-54.  doi: 10.1016/j.automatica.2004.08.013.  Google Scholar

[23]

N. UllahM. A. AliR. Ahmad and A. Khattak, Fractional order control of static series synchronous compensator with parametric uncertainty, IET Generation, Transmission & Distribution, 11 (2017), 289-302.   Google Scholar

[24]

V. I. Utkin and H.-C. Chang, Sliding mode control on electro-mechanical systems, Math. Probl. Eng., 8 (2002), 451-471.  doi: 10.1080/10241230306724.  Google Scholar

[25]

F. WangZ. Liu and G. Lai, Fuzzy adaptive control of nonlinear uncertain plants with unknown dead zone output, Fuzzy Sets and Systems, 263 (2015), 27-48.  doi: 10.1016/j.fss.2014.04.024.  Google Scholar

[26]

J. WuW. Chen and J. Li, Fuzzy-approximation-based global adaptive control for uncertain strict-feedback systems with a priori known tracking accuracy, Fuzzy Sets and Systems, 273 (2015), 1-25.  doi: 10.1016/j.fss.2014.10.009.  Google Scholar

[27]

J. YaoZ. Jiao and S. Han, Friction compensation for low velocity control of hydraulic flight motion simulator: A simple adaptive robust approach, Chinese Journal of Aeronautics, 26 (2013), 814-822.   Google Scholar

[28]

J. Yao and Z. Jiao, Friction compensation for hydraulic load simulator based on improved LuGre friction model, Journal of Beijing University of Aeronautics And Astronautics, 36 (2010), 812-815.   Google Scholar

[29]

K. D. YoungV. I. Utkin and U. Ozguner, A control engineer's guide to sliding mode control, IEEE Transactions on Control Systems Technology, 7 (1999), 328-342.  doi: 10.1109/87.761053.  Google Scholar

[30]

B. ZhangY. Pi and Y. Luo, Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor, ISA Transactions, 51 (2012), 649-656.  doi: 10.1016/j.isatra.2012.04.006.  Google Scholar

show all references

References:
[1]

M. P. Aghababa, A Lyapunov-based control scheme for robust stabilization of fractional chaotic systems, Nonlinear Dynam., 78 (2014), 2129-2140.  doi: 10.1007/s11071-014-1594-8.  Google Scholar

[2]

M. Asghar and N. Ullah, Performance comparison of wind turbine based doubly fed induction generator system using fault tolerant fractional and integer order controllers, Renewable Energy, 116 (2018), 244-264.  doi: 10.1016/j.renene.2017.01.008.  Google Scholar

[3]

J. Bai and X.-C. Feng, Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Process., 16 (2007), 2492-2502.  doi: 10.1109/TIP.2007.904971.  Google Scholar

[4]

G. BartoliniA. Ferrara and E. Usai, Chattering avoidance by second-order sliding mode control, IEEE Trans. Automat. Control, 43 (1998), 241-246.  doi: 10.1109/9.661074.  Google Scholar

[5]

A. BoulkrouneA. BouzeribaS. Hamel and T. Bouden, Adaptive fuzzy control-based projective synchronization of uncertain nonaffine chaotic systems, Complexity, 21 (2015), 180-192.  doi: 10.1002/cplx.21596.  Google Scholar

[6]

B. ChenX. LiuK. Liu and C. Lin, Direct adaptive fuzzy control of nonlinear strict-feedback systems, Automatica J. IFAC, 45 (2009), 1530-1535.  doi: 10.1016/j.automatica.2009.02.025.  Google Scholar

[7]

X. ChenS. TsuruokaT. Fukuda and T. Hori, Disturbance identification and its application for MIMO systems, IFAC Proceedings Volumes, 30 (1997), 1305-1310.  doi: 10.1016/S1474-6670(17)43022-9.  Google Scholar

[8]

M.-S. Chen and M.-L. Tseng, A new design for noise-induced chattering reduction in sliding mode control, in Sliding Mode Control, 24, IntechOpen, Rijeka, (2011), 461–472. doi: 10.5772/15507.  Google Scholar

[9]

W. Chen and Z. Zhang, Globally stable adaptive backstepping fuzzy control for output-feedback systems with unknown high-frequency gain sign, Fuzzy Sets and Systems, 161 (2010), 821-836.  doi: 10.1016/j.fss.2009.10.026.  Google Scholar

[10]

W. ChenL. JiaoR. Li and J. Li, Adaptive backstepping fuzzy control for nonlinearly parameterized systems with periodic disturbances, IEEE Transactions on Fuzzy Systems, 18 (2010), 674-685.  doi: 10.1109/TFUZZ.2010.2046329.  Google Scholar

[11]

S. Dadras and H. R. Momeni, Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 367-377.  doi: 10.1016/j.cnsns.2011.04.032.  Google Scholar

[12]

H. Delavari, R. Ghaderi, A. N. Ranjbar, S. H. Hosseinnia and S. Momani, Adaptive fractional PID controller for robot manipulator, in Proceedings of FDA'10. The 4th IFAC Workshop Fractional Differentiation and its Applications, Badajoz, Spain, (2010), 1–7. Google Scholar

[13]

H. F. HoY. K. Wong and A. B. Rad, Adaptive fuzzy sliding mode control with chattering elimination for nonlinear SISO systems, Simulation Modeling Practice and Theory, 17 (2009), 1199-1210.  doi: 10.1016/j.simpat.2009.04.004.  Google Scholar

[14]

A. KawamuraH. Itoh and K. Sakamoto, Chattering reduction of disturbance observer based sliding mode control, IEEE Transactions on Industry Applications, 30 (1994), 456-461.  doi: 10.1109/28.287509.  Google Scholar

[15]

G. LaiZ. LiuY. ZhangC. L. P. ChenS. Xie and Y. Liu, Fuzzy adaptive inverse compensation method to tracking control of uncertain nonlinear systems with generalized actuator dead zone, IEEE Transactions on Fuzzy Systems, 25 (2017), 191-204.  doi: 10.1109/TFUZZ.2016.2554152.  Google Scholar

[16]

Y. Luo and Y. Q. Chen, Fractional Order Motion Controls, John Wiley & Sons, 2012. doi: 10.1002/9781118387726.  Google Scholar

[17]

D. Matignon, Stability properties for generalized fractional differential systems, ESAIM: Proc., 5 (1998), 145-158.  doi: 10.1051/proc:1998004.  Google Scholar

[18]

K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley-Interscience, John Wiley & Sons, Inc., New York, 1993.  Google Scholar

[19]

A. OustaloupX. Mreau and M Nouillant, The CRONE suspension, Control Engineering Practice, 4 (1996), 1101-1108.  doi: 10.1016/0967-0661(96)00109-8.  Google Scholar

[20]

I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.  Google Scholar

[21]

A. Rhif, Stabilizing sliding mode control design and application for a DC motor: Speed control, CoRR, 2 (2012), 39-48.  doi: 10.5121/ijics.2012.2104.  Google Scholar

[22]

S. Seshagiri and H. K. Khalil, Robust output feedback regulation of minimum-phase nonlinear systems using conditional integrators, Automatica J. IFAC, 41 (2005), 43-54.  doi: 10.1016/j.automatica.2004.08.013.  Google Scholar

[23]

N. UllahM. A. AliR. Ahmad and A. Khattak, Fractional order control of static series synchronous compensator with parametric uncertainty, IET Generation, Transmission & Distribution, 11 (2017), 289-302.   Google Scholar

[24]

V. I. Utkin and H.-C. Chang, Sliding mode control on electro-mechanical systems, Math. Probl. Eng., 8 (2002), 451-471.  doi: 10.1080/10241230306724.  Google Scholar

[25]

F. WangZ. Liu and G. Lai, Fuzzy adaptive control of nonlinear uncertain plants with unknown dead zone output, Fuzzy Sets and Systems, 263 (2015), 27-48.  doi: 10.1016/j.fss.2014.04.024.  Google Scholar

[26]

J. WuW. Chen and J. Li, Fuzzy-approximation-based global adaptive control for uncertain strict-feedback systems with a priori known tracking accuracy, Fuzzy Sets and Systems, 273 (2015), 1-25.  doi: 10.1016/j.fss.2014.10.009.  Google Scholar

[27]

J. YaoZ. Jiao and S. Han, Friction compensation for low velocity control of hydraulic flight motion simulator: A simple adaptive robust approach, Chinese Journal of Aeronautics, 26 (2013), 814-822.   Google Scholar

[28]

J. Yao and Z. Jiao, Friction compensation for hydraulic load simulator based on improved LuGre friction model, Journal of Beijing University of Aeronautics And Astronautics, 36 (2010), 812-815.   Google Scholar

[29]

K. D. YoungV. I. Utkin and U. Ozguner, A control engineer's guide to sliding mode control, IEEE Transactions on Control Systems Technology, 7 (1999), 328-342.  doi: 10.1109/87.761053.  Google Scholar

[30]

B. ZhangY. Pi and Y. Luo, Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor, ISA Transactions, 51 (2012), 649-656.  doi: 10.1016/j.isatra.2012.04.006.  Google Scholar

Figure 1.  (a): variation of $ \alpha $ with $ |S_{3} | $ (b): Variation of $ \beta $ with $ |S_{3} | $
Figure 2.  (a): Fuzzy sets of input variable $ |S_{3} | $(b): Fuzzy sets of out variable $ \alpha $(c): Fuzzy sets of out variable $ \beta $(d): Variation of $ \beta $ with $ \alpha $
Figure 3.  (a) speed regulation, (b) control signal, (c) sliding surface
Figure 4.  Enlarged view of (a) speed regulation, (b) control signal, (c) sliding surface
Figure 5.  (a) speed error, (b) control signal, (c) sliding surface with $ D(X, u, t) $
Figure 6.  Enlarged view of (a) speed error, (b) control signal, (c) sliding surface with $ D(X, u, t) $
Figure 7.  (a) speed error, (b) control signal, (c) sliding surface with $ D(X, u, t) $ and measurement noise
Figure 8.  Enlarged view of (a) speed error, (b) control signal, (c) sliding surface with $ D(X, u, t) $ and measurement noise
Figure 9.  Speed regulation (b) Speed error (c) Control signal (d) Sliding surface with with $ D(X, u, t) $ and measurement noise
Figure 10.  (a) Speed error (b) Control signal (c) Sliding surface with with $ D(X, u, t) $ and measurement noise
Figure 11.  (a) Adaptation of $ \alpha $ (b) Adaptation of $ \beta $
[1]

Yuan Li, Ruxia Zhang, Yi Zhang, Bo Yang. Sliding mode control for uncertain T-S fuzzy systems with input and state delays. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 345-354. doi: 10.3934/naco.2020006

[2]

Cecilia Cavaterra, Denis Enăchescu, Gabriela Marinoschi. Sliding mode control of the Hodgkin–Huxley mathematical model. Evolution Equations & Control Theory, 2019, 8 (4) : 883-902. doi: 10.3934/eect.2019043

[3]

Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020375

[4]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[5]

Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619

[6]

Hernán Cendra, María Etchechoury, Sebastián J. Ferraro. Impulsive control of a symmetric ball rolling without sliding or spinning. Journal of Geometric Mechanics, 2010, 2 (4) : 321-342. doi: 10.3934/jgm.2010.2.321

[7]

Shu Zhang, Yuan Yuan. The Filippov equilibrium and sliding motion in an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1189-1206. doi: 10.3934/dcdsb.2017058

[8]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020033

[9]

George A. Anastassiou. Fractional Ostrowski-Sugeno Fuzzy univariate inequalities. Discrete & Continuous Dynamical Systems - S, 2019  doi: 10.3934/dcdss.2020111

[10]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[11]

Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 539-560. doi: 10.3934/dcdss.2020030

[12]

Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861

[13]

Qi Lü, Enrique Zuazua. Robust null controllability for heat equations with unknown switching control mode. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4183-4210. doi: 10.3934/dcds.2014.34.4183

[14]

Matthias Geissert, Horst Heck, Christof Trunk. $H^{\infty}$-calculus for a system of Laplace operators with mixed order boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1259-1275. doi: 10.3934/dcdss.2013.6.1259

[15]

Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016

[16]

Yong Zhao, Qishao Lu. Periodic oscillations in a class of fuzzy neural networks under impulsive control. Conference Publications, 2011, 2011 (Special) : 1457-1466. doi: 10.3934/proc.2011.2011.1457

[17]

Aliki D. Muradova, Georgios K. Tairidis, Georgios E. Stavroulakis. Adaptive Neuro-Fuzzy vibration control of a smart plate. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 251-271. doi: 10.3934/naco.2017017

[18]

Peng Cheng, Yanqing Liu, Yanyan Yin, Song Wang, Feng Pan. Fuzzy event-triggered disturbance rejection control of nonlinear systems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020119

[19]

Lei Wang, Jinlong Yuan, Yingfang Li, Enmin Feng, Zhilong Xiu. Parameter identification of nonlinear delayed dynamical system in microbial fermentation based on biological robustness. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 103-113. doi: 10.3934/naco.2014.4.103

[20]

Qi Yang, Lei Wang, Enmin Feng, Hongchao Yin, Zhilong Xiu. Identification and robustness analysis of nonlinear hybrid dynamical system of genetic regulation in continuous culture. Journal of Industrial & Management Optimization, 2020, 16 (2) : 579-599. doi: 10.3934/jimo.2018168

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]