May  2020, 3(2): 101-116. doi: 10.3934/mfc.2020008

Weaving K-fusion frames in hilbert spaces

1. 

School of Mathematics and Information Science, North Minzu University, Yinchuan, 750021, China

2. 

School of Science, Dalian Minzu University, Dalian, 116600, China

3. 

School of Mathematics Science, Dalian University of Technology, Dalian, 116024, China

* Corresponding author: Yongdong Huang

Received  December 2019 Revised  April 2020 Published  May 2020

$ K $-fusion frames are generalizations of fusion frames in frame theory. In this paper, based on the weaving frames and $ K $-fusion frames, we propose the notion of weaving $ K $-fusion frames and conduct relevant research. First, we give some characterizations of weaving $ K $-fusion frames. Then, by means of operator theory and frame theory, we present several novel construction approaches of weaving $ K $-fusion frames. Finally, we discuss transitivity of weaving $ K $-fusion frames.

Citation: Hanbing Liu, Yongdong Huang, Chongjun Li. Weaving K-fusion frames in hilbert spaces. Mathematical Foundations of Computing, 2020, 3 (2) : 101-116. doi: 10.3934/mfc.2020008
References:
[1]

T. BemroseP. G. CasazzaK. GröchenigM. C. Lammers and R. G. Lynch, Weaving frames, Oper. Matrices, 10 (2016), 1093-1116.  doi: 10.7153/oam-10-61.  Google Scholar

[2]

P. G. Casazza, The art of frame theory, Taiwanese J. Math., 4 (2000), 129-202.  doi: 10.11650/twjm/1500407227.  Google Scholar

[3]

P. G. CasazzaG. Kutyniok and S. Li, Fusion frames and distributed processing, Appl. Comput. Harmon. Anal., 25 (2008), 114-132.  doi: 10.1016/j.acha.2007.10.001.  Google Scholar

[4]

P. G. Casazza and G. Kutyniok, Frames of subspaces, Wavelets, Frames and Operator Theory, 345 (2004), 87-113.  doi: 10.1090/conm/345/06242.  Google Scholar

[5]

O. Christensen, An Introduction to Frames and Riesz Bases, 2$^nd$ edition, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, [Cham], 2016. doi: 10.1007/978-3-319-25613-9.  Google Scholar

[6]

I. DaubechiesA. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys., 27 (1986), 1271-1283.  doi: 10.1063/1.527388.  Google Scholar

[7]

S. G. Deepshikha, L. K. Vashisht and G. Verma, On weaving fusion frames for Hilbert spaces, 2017 International Conference on Sampling Theory and Applications (SampTA), Tallin, (2017), 381–385. doi: 10.1109/SAMPTA.2017.8024363.  Google Scholar

[8]

V. Deepshikha and L. K. Vashisht, Weaving $K$-frames in Hilbert spaces, Results. Math., 73 (2018), 20 pp. doi: 10.1007/s00025-018-0843-4.  Google Scholar

[9]

R. J. Duffin and A. C. Schaeffer, A class of nonharmonic fourier series, Trans. Amer. Math. Soc., 72 (1952), 341-366.  doi: 10.1090/S0002-9947-1952-0047179-6.  Google Scholar

[10]

P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math., 7 (1971), 254-281.  doi: 10.1016/S0001-8708(71)80006-3.  Google Scholar

[11]

D. Hua and Y. Huang, Controlled $K$-g-frames in Hilbert spaces, Results Math., 72 (2017), 1227-1238.  doi: 10.1007/s00025-016-0613-0.  Google Scholar

[12]

Y. Huang and S. Shi, New Constructions of $K$-g-frames, Results Math., 73 (2018), 13 pp. doi: 10.1007/s00025-018-0924-4.  Google Scholar

[13]

A. Khosravi and B. Khosravi, Fusion frames and $g$-frames in Hilbert $C^{\ast}$-modules, Int. J. Wavelets Multiresolut. Inf. Process., 6 (2008), 433-446.  doi: 10.1142/S0219691308002458.  Google Scholar

[14]

A. Khosravi and K. Musazadeh, Fusion frames and $g$-frames, J. Math. Anal. Appl., 342 (2008), 1068-1083.  doi: 10.1016/j.jmaa.2008.01.002.  Google Scholar

[15]

D. Li and J. Leng, Fusion frames for operators and atomic systems, preprint, arXiv: 1801.02785. Google Scholar

[16]

F. A. Neyshaburi and A. A. Arefijamaal, Characterization and construction of $K$-fusion frames and their duals in hilbert spaces, Results Math., 73 (2018), 26 pp. doi: 10.1007/s00025-018-0781-1.  Google Scholar

[17]

F. A. Neyshaburi and A. A. Arefijamaal, Weaving Hilbert space fusion frames, preprint, arXiv: 1802.03352. Google Scholar

[18]

A. Rahimi, Z. Samadzadeh and B. Daraby, Woven fusion frames in Hilbert spaces, preprint, arXiv: 1808.03765. Google Scholar

[19]

S. Shi and Y. Huang, $K$-g-frames and their dual, Int. J. Wavelets Multiresolut. Inf. Process., 17 (2019), 11 pp. doi: 10.1142/S0219691319500152.  Google Scholar

[20]

W. Sun, $G$-frames and $g$-Riesz bases, J. Math. Anal. Appl., 322 (2006), 437-452.  doi: 10.1016/j.jmaa.2005.09.039.  Google Scholar

show all references

References:
[1]

T. BemroseP. G. CasazzaK. GröchenigM. C. Lammers and R. G. Lynch, Weaving frames, Oper. Matrices, 10 (2016), 1093-1116.  doi: 10.7153/oam-10-61.  Google Scholar

[2]

P. G. Casazza, The art of frame theory, Taiwanese J. Math., 4 (2000), 129-202.  doi: 10.11650/twjm/1500407227.  Google Scholar

[3]

P. G. CasazzaG. Kutyniok and S. Li, Fusion frames and distributed processing, Appl. Comput. Harmon. Anal., 25 (2008), 114-132.  doi: 10.1016/j.acha.2007.10.001.  Google Scholar

[4]

P. G. Casazza and G. Kutyniok, Frames of subspaces, Wavelets, Frames and Operator Theory, 345 (2004), 87-113.  doi: 10.1090/conm/345/06242.  Google Scholar

[5]

O. Christensen, An Introduction to Frames and Riesz Bases, 2$^nd$ edition, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, [Cham], 2016. doi: 10.1007/978-3-319-25613-9.  Google Scholar

[6]

I. DaubechiesA. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys., 27 (1986), 1271-1283.  doi: 10.1063/1.527388.  Google Scholar

[7]

S. G. Deepshikha, L. K. Vashisht and G. Verma, On weaving fusion frames for Hilbert spaces, 2017 International Conference on Sampling Theory and Applications (SampTA), Tallin, (2017), 381–385. doi: 10.1109/SAMPTA.2017.8024363.  Google Scholar

[8]

V. Deepshikha and L. K. Vashisht, Weaving $K$-frames in Hilbert spaces, Results. Math., 73 (2018), 20 pp. doi: 10.1007/s00025-018-0843-4.  Google Scholar

[9]

R. J. Duffin and A. C. Schaeffer, A class of nonharmonic fourier series, Trans. Amer. Math. Soc., 72 (1952), 341-366.  doi: 10.1090/S0002-9947-1952-0047179-6.  Google Scholar

[10]

P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math., 7 (1971), 254-281.  doi: 10.1016/S0001-8708(71)80006-3.  Google Scholar

[11]

D. Hua and Y. Huang, Controlled $K$-g-frames in Hilbert spaces, Results Math., 72 (2017), 1227-1238.  doi: 10.1007/s00025-016-0613-0.  Google Scholar

[12]

Y. Huang and S. Shi, New Constructions of $K$-g-frames, Results Math., 73 (2018), 13 pp. doi: 10.1007/s00025-018-0924-4.  Google Scholar

[13]

A. Khosravi and B. Khosravi, Fusion frames and $g$-frames in Hilbert $C^{\ast}$-modules, Int. J. Wavelets Multiresolut. Inf. Process., 6 (2008), 433-446.  doi: 10.1142/S0219691308002458.  Google Scholar

[14]

A. Khosravi and K. Musazadeh, Fusion frames and $g$-frames, J. Math. Anal. Appl., 342 (2008), 1068-1083.  doi: 10.1016/j.jmaa.2008.01.002.  Google Scholar

[15]

D. Li and J. Leng, Fusion frames for operators and atomic systems, preprint, arXiv: 1801.02785. Google Scholar

[16]

F. A. Neyshaburi and A. A. Arefijamaal, Characterization and construction of $K$-fusion frames and their duals in hilbert spaces, Results Math., 73 (2018), 26 pp. doi: 10.1007/s00025-018-0781-1.  Google Scholar

[17]

F. A. Neyshaburi and A. A. Arefijamaal, Weaving Hilbert space fusion frames, preprint, arXiv: 1802.03352. Google Scholar

[18]

A. Rahimi, Z. Samadzadeh and B. Daraby, Woven fusion frames in Hilbert spaces, preprint, arXiv: 1808.03765. Google Scholar

[19]

S. Shi and Y. Huang, $K$-g-frames and their dual, Int. J. Wavelets Multiresolut. Inf. Process., 17 (2019), 11 pp. doi: 10.1142/S0219691319500152.  Google Scholar

[20]

W. Sun, $G$-frames and $g$-Riesz bases, J. Math. Anal. Appl., 322 (2006), 437-452.  doi: 10.1016/j.jmaa.2005.09.039.  Google Scholar

[1]

Qiao-Fang Lian, Yun-Zhang Li. Reducing subspace frame multiresolution analysis and frame wavelets. Communications on Pure & Applied Analysis, 2007, 6 (3) : 741-756. doi: 10.3934/cpaa.2007.6.741

[2]

Haisheng Tan, Liuyan Liu, Hongyu Liang. Total $\{k\}$-domination in special graphs. Mathematical Foundations of Computing, 2018, 1 (3) : 255-263. doi: 10.3934/mfc.2018011

[3]

Ekta Mittal, Sunil Joshi. Note on a $ k $-generalised fractional derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 797-804. doi: 10.3934/dcdss.2020045

[4]

Jianqin Zhou, Wanquan Liu, Xifeng Wang, Guanglu Zhou. On the $ k $-error linear complexity for $ p^n $-periodic binary sequences via hypercube theory. Mathematical Foundations of Computing, 2019, 2 (4) : 279-297. doi: 10.3934/mfc.2019018

[5]

Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062

[6]

Adam Kanigowski, Federico Rodriguez Hertz, Kurt Vinhage. On the non-equivalence of the Bernoulli and $ K$ properties in dimension four. Journal of Modern Dynamics, 2018, 13: 221-250. doi: 10.3934/jmd.2018019

[7]

Silvia Frassu. Nonlinear Dirichlet problem for the nonlocal anisotropic operator $ L_K $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1847-1867. doi: 10.3934/cpaa.2019086

[8]

Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020056

[9]

Jingwei Liang, Jia Li, Zuowei Shen, Xiaoqun Zhang. Wavelet frame based color image demosaicing. Inverse Problems & Imaging, 2013, 7 (3) : 777-794. doi: 10.3934/ipi.2013.7.777

[10]

Fahd Jarad, Thabet Abdeljawad. Variational principles in the frame of certain generalized fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 695-708. doi: 10.3934/dcdss.2020038

[11]

Yuanfen Xiao. Mean Li-Yorke Chaotic set along polynomial sequence with Full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020267

[12]

Banavara N. Shashikanth. Poisson brackets for the dynamically coupled system of a free boundary and a neutrally buoyant rigid body in a body-fixed frame. Journal of Geometric Mechanics, 2020, 12 (1) : 25-52. doi: 10.3934/jgm.2020003

[13]

Huimin Zheng, Xuejun Guo, Hourong Qin. The Mahler measure of $ (x+1/x)(y+1/y)(z+1/z)+\sqrt{k} $. Electronic Research Archive, 2020, 28 (1) : 103-125. doi: 10.3934/era.2020007

[14]

Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109

[15]

Pak Tung Ho. Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry. Communications on Pure & Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033

[16]

Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077

[17]

Xiaopeng Zhao. Space-time decay estimates of solutions to liquid crystal system in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2019, 18 (1) : 1-13. doi: 10.3934/cpaa.2019001

[18]

E. Compaan. A note on global existence for the Zakharov system on $ \mathbb{T} $. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2473-2489. doi: 10.3934/cpaa.2019112

[19]

Jiayan Yang, Dongpei Zhang. Superfluidity phase transitions for liquid $ ^{4} $He system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5107-5120. doi: 10.3934/dcdsb.2019045

[20]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2019  doi: 10.3934/jimo.2019096

 Impact Factor: 

Metrics

  • PDF downloads (29)
  • HTML views (131)
  • Cited by (0)

Other articles
by authors

[Back to Top]