May  2020, 3(2): 101-116. doi: 10.3934/mfc.2020008

Weaving K-fusion frames in hilbert spaces

1. 

School of Mathematics and Information Science, North Minzu University, Yinchuan, 750021, China

2. 

School of Science, Dalian Minzu University, Dalian, 116600, China

3. 

School of Mathematics Science, Dalian University of Technology, Dalian, 116024, China

* Corresponding author: Yongdong Huang

Received  December 2019 Revised  April 2020 Published  May 2020

$ K $-fusion frames are generalizations of fusion frames in frame theory. In this paper, based on the weaving frames and $ K $-fusion frames, we propose the notion of weaving $ K $-fusion frames and conduct relevant research. First, we give some characterizations of weaving $ K $-fusion frames. Then, by means of operator theory and frame theory, we present several novel construction approaches of weaving $ K $-fusion frames. Finally, we discuss transitivity of weaving $ K $-fusion frames.

Citation: Hanbing Liu, Yongdong Huang, Chongjun Li. Weaving K-fusion frames in hilbert spaces. Mathematical Foundations of Computing, 2020, 3 (2) : 101-116. doi: 10.3934/mfc.2020008
References:
[1]

T. BemroseP. G. CasazzaK. GröchenigM. C. Lammers and R. G. Lynch, Weaving frames, Oper. Matrices, 10 (2016), 1093-1116.  doi: 10.7153/oam-10-61.  Google Scholar

[2]

P. G. Casazza, The art of frame theory, Taiwanese J. Math., 4 (2000), 129-202.  doi: 10.11650/twjm/1500407227.  Google Scholar

[3]

P. G. CasazzaG. Kutyniok and S. Li, Fusion frames and distributed processing, Appl. Comput. Harmon. Anal., 25 (2008), 114-132.  doi: 10.1016/j.acha.2007.10.001.  Google Scholar

[4]

P. G. Casazza and G. Kutyniok, Frames of subspaces, Wavelets, Frames and Operator Theory, 345 (2004), 87-113.  doi: 10.1090/conm/345/06242.  Google Scholar

[5]

O. Christensen, An Introduction to Frames and Riesz Bases, 2$^nd$ edition, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, [Cham], 2016. doi: 10.1007/978-3-319-25613-9.  Google Scholar

[6]

I. DaubechiesA. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys., 27 (1986), 1271-1283.  doi: 10.1063/1.527388.  Google Scholar

[7]

S. G. Deepshikha, L. K. Vashisht and G. Verma, On weaving fusion frames for Hilbert spaces, 2017 International Conference on Sampling Theory and Applications (SampTA), Tallin, (2017), 381–385. doi: 10.1109/SAMPTA.2017.8024363.  Google Scholar

[8]

V. Deepshikha and L. K. Vashisht, Weaving $K$-frames in Hilbert spaces, Results. Math., 73 (2018), 20 pp. doi: 10.1007/s00025-018-0843-4.  Google Scholar

[9]

R. J. Duffin and A. C. Schaeffer, A class of nonharmonic fourier series, Trans. Amer. Math. Soc., 72 (1952), 341-366.  doi: 10.1090/S0002-9947-1952-0047179-6.  Google Scholar

[10]

P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math., 7 (1971), 254-281.  doi: 10.1016/S0001-8708(71)80006-3.  Google Scholar

[11]

D. Hua and Y. Huang, Controlled $K$-g-frames in Hilbert spaces, Results Math., 72 (2017), 1227-1238.  doi: 10.1007/s00025-016-0613-0.  Google Scholar

[12]

Y. Huang and S. Shi, New Constructions of $K$-g-frames, Results Math., 73 (2018), 13 pp. doi: 10.1007/s00025-018-0924-4.  Google Scholar

[13]

A. Khosravi and B. Khosravi, Fusion frames and $g$-frames in Hilbert $C^{\ast}$-modules, Int. J. Wavelets Multiresolut. Inf. Process., 6 (2008), 433-446.  doi: 10.1142/S0219691308002458.  Google Scholar

[14]

A. Khosravi and K. Musazadeh, Fusion frames and $g$-frames, J. Math. Anal. Appl., 342 (2008), 1068-1083.  doi: 10.1016/j.jmaa.2008.01.002.  Google Scholar

[15]

D. Li and J. Leng, Fusion frames for operators and atomic systems, preprint, arXiv: 1801.02785. Google Scholar

[16]

F. A. Neyshaburi and A. A. Arefijamaal, Characterization and construction of $K$-fusion frames and their duals in hilbert spaces, Results Math., 73 (2018), 26 pp. doi: 10.1007/s00025-018-0781-1.  Google Scholar

[17]

F. A. Neyshaburi and A. A. Arefijamaal, Weaving Hilbert space fusion frames, preprint, arXiv: 1802.03352. Google Scholar

[18]

A. Rahimi, Z. Samadzadeh and B. Daraby, Woven fusion frames in Hilbert spaces, preprint, arXiv: 1808.03765. Google Scholar

[19]

S. Shi and Y. Huang, $K$-g-frames and their dual, Int. J. Wavelets Multiresolut. Inf. Process., 17 (2019), 11 pp. doi: 10.1142/S0219691319500152.  Google Scholar

[20]

W. Sun, $G$-frames and $g$-Riesz bases, J. Math. Anal. Appl., 322 (2006), 437-452.  doi: 10.1016/j.jmaa.2005.09.039.  Google Scholar

show all references

References:
[1]

T. BemroseP. G. CasazzaK. GröchenigM. C. Lammers and R. G. Lynch, Weaving frames, Oper. Matrices, 10 (2016), 1093-1116.  doi: 10.7153/oam-10-61.  Google Scholar

[2]

P. G. Casazza, The art of frame theory, Taiwanese J. Math., 4 (2000), 129-202.  doi: 10.11650/twjm/1500407227.  Google Scholar

[3]

P. G. CasazzaG. Kutyniok and S. Li, Fusion frames and distributed processing, Appl. Comput. Harmon. Anal., 25 (2008), 114-132.  doi: 10.1016/j.acha.2007.10.001.  Google Scholar

[4]

P. G. Casazza and G. Kutyniok, Frames of subspaces, Wavelets, Frames and Operator Theory, 345 (2004), 87-113.  doi: 10.1090/conm/345/06242.  Google Scholar

[5]

O. Christensen, An Introduction to Frames and Riesz Bases, 2$^nd$ edition, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, [Cham], 2016. doi: 10.1007/978-3-319-25613-9.  Google Scholar

[6]

I. DaubechiesA. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys., 27 (1986), 1271-1283.  doi: 10.1063/1.527388.  Google Scholar

[7]

S. G. Deepshikha, L. K. Vashisht and G. Verma, On weaving fusion frames for Hilbert spaces, 2017 International Conference on Sampling Theory and Applications (SampTA), Tallin, (2017), 381–385. doi: 10.1109/SAMPTA.2017.8024363.  Google Scholar

[8]

V. Deepshikha and L. K. Vashisht, Weaving $K$-frames in Hilbert spaces, Results. Math., 73 (2018), 20 pp. doi: 10.1007/s00025-018-0843-4.  Google Scholar

[9]

R. J. Duffin and A. C. Schaeffer, A class of nonharmonic fourier series, Trans. Amer. Math. Soc., 72 (1952), 341-366.  doi: 10.1090/S0002-9947-1952-0047179-6.  Google Scholar

[10]

P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math., 7 (1971), 254-281.  doi: 10.1016/S0001-8708(71)80006-3.  Google Scholar

[11]

D. Hua and Y. Huang, Controlled $K$-g-frames in Hilbert spaces, Results Math., 72 (2017), 1227-1238.  doi: 10.1007/s00025-016-0613-0.  Google Scholar

[12]

Y. Huang and S. Shi, New Constructions of $K$-g-frames, Results Math., 73 (2018), 13 pp. doi: 10.1007/s00025-018-0924-4.  Google Scholar

[13]

A. Khosravi and B. Khosravi, Fusion frames and $g$-frames in Hilbert $C^{\ast}$-modules, Int. J. Wavelets Multiresolut. Inf. Process., 6 (2008), 433-446.  doi: 10.1142/S0219691308002458.  Google Scholar

[14]

A. Khosravi and K. Musazadeh, Fusion frames and $g$-frames, J. Math. Anal. Appl., 342 (2008), 1068-1083.  doi: 10.1016/j.jmaa.2008.01.002.  Google Scholar

[15]

D. Li and J. Leng, Fusion frames for operators and atomic systems, preprint, arXiv: 1801.02785. Google Scholar

[16]

F. A. Neyshaburi and A. A. Arefijamaal, Characterization and construction of $K$-fusion frames and their duals in hilbert spaces, Results Math., 73 (2018), 26 pp. doi: 10.1007/s00025-018-0781-1.  Google Scholar

[17]

F. A. Neyshaburi and A. A. Arefijamaal, Weaving Hilbert space fusion frames, preprint, arXiv: 1802.03352. Google Scholar

[18]

A. Rahimi, Z. Samadzadeh and B. Daraby, Woven fusion frames in Hilbert spaces, preprint, arXiv: 1808.03765. Google Scholar

[19]

S. Shi and Y. Huang, $K$-g-frames and their dual, Int. J. Wavelets Multiresolut. Inf. Process., 17 (2019), 11 pp. doi: 10.1142/S0219691319500152.  Google Scholar

[20]

W. Sun, $G$-frames and $g$-Riesz bases, J. Math. Anal. Appl., 322 (2006), 437-452.  doi: 10.1016/j.jmaa.2005.09.039.  Google Scholar

[1]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3497-3528. doi: 10.3934/dcdss.2020442

[2]

Qiao-Fang Lian, Yun-Zhang Li. Reducing subspace frame multiresolution analysis and frame wavelets. Communications on Pure & Applied Analysis, 2007, 6 (3) : 741-756. doi: 10.3934/cpaa.2007.6.741

[3]

Ekta Mittal, Sunil Joshi. Note on a $ k $-generalised fractional derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 797-804. doi: 10.3934/dcdss.2020045

[4]

Haisheng Tan, Liuyan Liu, Hongyu Liang. Total $\{k\}$-domination in special graphs. Mathematical Foundations of Computing, 2018, 1 (3) : 255-263. doi: 10.3934/mfc.2018011

[5]

Jianqin Zhou, Wanquan Liu, Xifeng Wang, Guanglu Zhou. On the $ k $-error linear complexity for $ p^n $-periodic binary sequences via hypercube theory. Mathematical Foundations of Computing, 2019, 2 (4) : 279-297. doi: 10.3934/mfc.2019018

[6]

Rakesh Nandi, Sujit Kumar Samanta, Chesoong Kim. Analysis of $ D $-$ BMAP/G/1 $ queueing system under $ N $-policy and its cost optimization. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3603-3631. doi: 10.3934/jimo.2020135

[7]

Fahd Jarad, Thabet Abdeljawad. Variational principles in the frame of certain generalized fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 695-708. doi: 10.3934/dcdss.2020038

[8]

Jingwei Liang, Jia Li, Zuowei Shen, Xiaoqun Zhang. Wavelet frame based color image demosaicing. Inverse Problems & Imaging, 2013, 7 (3) : 777-794. doi: 10.3934/ipi.2013.7.777

[9]

Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad, Saed F. Mallak, Hussam Alrabaiah. Lyapunov type inequality in the frame of generalized Caputo derivatives. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2335-2355. doi: 10.3934/dcdss.2020212

[10]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[11]

Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062

[12]

Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2013-2030. doi: 10.3934/jimo.2020056

[13]

Silvia Frassu. Nonlinear Dirichlet problem for the nonlocal anisotropic operator $ L_K $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1847-1867. doi: 10.3934/cpaa.2019086

[14]

Adam Kanigowski, Federico Rodriguez Hertz, Kurt Vinhage. On the non-equivalence of the Bernoulli and $ K$ properties in dimension four. Journal of Modern Dynamics, 2018, 13: 221-250. doi: 10.3934/jmd.2018019

[15]

Habibul Islam, Om Prakash, Ram Krishna Verma. New quantum codes from constacyclic codes over the ring $ R_{k,m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020097

[16]

Min Li, Yishui Wang, Dachuan Xu, Dongmei Zhang. The approximation algorithm based on seeding method for functional $ k $-means problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020160

[17]

Chenchen Wu, Wei Lv, Yujie Wang, Dachuan Xu. Approximation algorithm for spherical $ k $-means problem with penalty. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021067

[18]

Yu-Ming Chu, Saima Rashid, Fahd Jarad, Muhammad Aslam Noor, Humaira Kalsoom. More new results on integral inequalities for generalized $ \mathcal{K} $-fractional conformable Integral operators. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2119-2135. doi: 10.3934/dcdss.2021063

[19]

Xavier Gràcia, Xavier Rivas, Narciso Román-Roy. Erratum: Constraint algorithm for singular field theories in the $ k $-cosymplectic framework. Journal of Geometric Mechanics, 2021, 13 (2) : 273-275. doi: 10.3934/jgm.2021007

[20]

Huaning Liu, Yixin Ren. On the pseudorandom properties of $ k $-ary Sidel'nikov sequences. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021038

 Impact Factor: 

Metrics

  • PDF downloads (170)
  • HTML views (419)
  • Cited by (0)

Other articles
by authors

[Back to Top]