May  2020, 3(2): 117-124. doi: 10.3934/mfc.2020009

Multivariate weighted kantorovich operators

1. 

Lucian Blaga University of Sibiu, Department of Mathematics and Informatics, Str. Dr. I. Ratiu, No.5-7, RO-550012 Sibiu, Romania

2. 

Technical University of Cluj-Napoca, Faculty of Automation and Computer Science, Department of Mathematics, Str. Memorandumului nr. 28 Cluj-Napoca, Romania

* Corresponding author: Ana-Maria Acu

Received  December 2019 Revised  April 2020 Published  May 2020

Recently, some weighted Durrmeyer type operators were used as research tools in Learning Theory. In this paper we introduce a class of multidimensional weighted Kantorovich operators $ K_n $ on $ C(Q_d) $ where $ Q_d $ is the $ d $-dimensional hypercube $ [0,1]^d $. We show that each $ K_n $ has a unique invariant probability measure and determine this measure. Then, using results from approximation theory and the theory of ergodic operators, we find the limit of the iterates of $ K_n $ and give rates of convergence of the iterates toward the limit. Finally, we show that some Kantorovich type operators previously investigated in literature fall into the class of operators introduced in our paper. Other properties and applications, involving Learning Theory, will be presented in a forthcoming paper, where we will consider also operators on spaces of Lebesgue integrable functions on the hypercube $ Q_d $.

Citation: Ana-Maria Acu, Laura Hodis, Ioan Rasa. Multivariate weighted kantorovich operators. Mathematical Foundations of Computing, 2020, 3 (2) : 117-124. doi: 10.3934/mfc.2020009
References:
[1]

A.-M. Acu and H. Gonska, Classical Kantorovich operators revisited, Ukrainian Math., 71 (2019), 843-852.   Google Scholar

[2]

A.-M. Acu, N. Manav and D. F. Sofonea, Approximation properties of $\lambda$-Kantorovich operators, J. Inequal. Appl., (2018), Paper No. 202, 12 pp. doi: 10.1186/s13660-018-1795-7.  Google Scholar

[3]

A.-M. Acu, M. Heilmann and I. Rasa, Iterates of convolution-type operators, submitted. Google Scholar

[4]

F. Altomare and M. Campiti, Korovkin-type approximation theory and its applications, in de Gruyter Studies in Mathematics, 17, Walter de Gruyter & Co., Berlin, (1994). doi: 10.1515/9783110884586.  Google Scholar

[5]

F. AltomareM. C. MontanoV. Leonessa and I. Raşa, A generalization of Kantorovich operators for convex compact subsets, Banach J. Math. Anal., 11 (2017), 591-614.  doi: 10.1215/17358787-2017-0008.  Google Scholar

[6]

F. AltomareM. C. MontanoV. Leonessa and I. Raşa, Elliptic differential operators and positive semigroups associated with generalized Kantorovich operators, J. Math. Anal. Appl., 458 (2018), 153-173.  doi: 10.1016/j.jmaa.2017.08.034.  Google Scholar

[7]

F. Altomare, M. C. Montano, V. Leonessa and I. Raşa, Markov operators, positive semigroups and approximation processes, in de Gruyter Studies in Mathematics, 61, De Gruyter, Berlin, (2014).  Google Scholar

[8]

F. Altomare and I. Raşa, Lipschitz contractions, unique ergodicity and asymptotics of Markov semigroups, Boll. Unione Mat. Ital. (9), 5 (2012), 1-17.   Google Scholar

[9]

E. E. Berdysheva, M. Heilmann and K. Hennings, Pointwise convergence of the Bernstein-Durrmeyer operators with respect to a collection of measures, J. Approx. Theory, 251 (2020), 12 pp. doi: 10.1016/j.jat.2019.105339.  Google Scholar

[10]

E. E. Berdysheva and K. Jetter, Multivariate Bernstein-Durrmeyer operators with arbitrary weight functions, J. Approx. Theory, 162 (2010), 576-598.  doi: 10.1016/j.jat.2009.11.005.  Google Scholar

[11]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979.  Google Scholar

[12]

F. Cucker and D.-X. Zhou, Learning theory: An approximation theory viewpoint, Cambridge Monographs on Applied and Computational Mathematics, 24, Cambridge University Press, Cambridge, 2007. doi: 10.1017/CBO9780511618796.  Google Scholar

[13]

H. GonskaM. Heilmann and I. Raşa, Kantorovich operators of order $k$, Numer. Funct. Anal. Optim., 32 (2011), 717-738.  doi: 10.1080/01630563.2011.580877.  Google Scholar

[14]

H. GonskaI. Raşa and M.-D. Rusu, Applications of an Ostrowski-type inequality, J. Comput. Anal. Appl., 14 (2012), 19-31.   Google Scholar

[15]

M. Heilmann and I. Raşa, Eigenstructure and iterates for uniquely ergodic Kantorovich modifications of operators, Positivity, 21 (2017), 897-910.  doi: 10.1007/s11117-016-0441-1.  Google Scholar

[16]

M. Heilmann and I. Raşa, $C_0$-semigroups associated with uniquely ergodic Kantorovich modifications of operators, Positivity, 22 (2018), 829-835.  doi: 10.1007/s11117-017-0547-0.  Google Scholar

[17]

J. G. Kemeny and J. L. Snell, Finite Markov Chains, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976.  Google Scholar

[18]

U. Krengel, Ergodic Theorems, De Gruyter Studies in Mathematics, 6, Walter de Gruyter & Co., Berlin, 1985. doi: 10.1515/9783110844641.  Google Scholar

[19]

D. H. Mache and D. X. Zhou, Characterization theorems for the approximation by a family of operators, J. Approx. Theory, 84 (1996), 145-161.  doi: 10.1006/jath.1996.0012.  Google Scholar

[20]

D.-X. Zhou, Converse theorems for multidimensional Kantorovich operators, Anal. Math., 19 (1993), 85-100.  doi: 10.1007/BF01904041.  Google Scholar

[21]

D.-X. Zhou and K. Jetter, Approximation with polynomial kernels and SVM classifiers, Adv. Comput. Math., 25 (2006), 323-344.  doi: 10.1007/s10444-004-7206-2.  Google Scholar

show all references

References:
[1]

A.-M. Acu and H. Gonska, Classical Kantorovich operators revisited, Ukrainian Math., 71 (2019), 843-852.   Google Scholar

[2]

A.-M. Acu, N. Manav and D. F. Sofonea, Approximation properties of $\lambda$-Kantorovich operators, J. Inequal. Appl., (2018), Paper No. 202, 12 pp. doi: 10.1186/s13660-018-1795-7.  Google Scholar

[3]

A.-M. Acu, M. Heilmann and I. Rasa, Iterates of convolution-type operators, submitted. Google Scholar

[4]

F. Altomare and M. Campiti, Korovkin-type approximation theory and its applications, in de Gruyter Studies in Mathematics, 17, Walter de Gruyter & Co., Berlin, (1994). doi: 10.1515/9783110884586.  Google Scholar

[5]

F. AltomareM. C. MontanoV. Leonessa and I. Raşa, A generalization of Kantorovich operators for convex compact subsets, Banach J. Math. Anal., 11 (2017), 591-614.  doi: 10.1215/17358787-2017-0008.  Google Scholar

[6]

F. AltomareM. C. MontanoV. Leonessa and I. Raşa, Elliptic differential operators and positive semigroups associated with generalized Kantorovich operators, J. Math. Anal. Appl., 458 (2018), 153-173.  doi: 10.1016/j.jmaa.2017.08.034.  Google Scholar

[7]

F. Altomare, M. C. Montano, V. Leonessa and I. Raşa, Markov operators, positive semigroups and approximation processes, in de Gruyter Studies in Mathematics, 61, De Gruyter, Berlin, (2014).  Google Scholar

[8]

F. Altomare and I. Raşa, Lipschitz contractions, unique ergodicity and asymptotics of Markov semigroups, Boll. Unione Mat. Ital. (9), 5 (2012), 1-17.   Google Scholar

[9]

E. E. Berdysheva, M. Heilmann and K. Hennings, Pointwise convergence of the Bernstein-Durrmeyer operators with respect to a collection of measures, J. Approx. Theory, 251 (2020), 12 pp. doi: 10.1016/j.jat.2019.105339.  Google Scholar

[10]

E. E. Berdysheva and K. Jetter, Multivariate Bernstein-Durrmeyer operators with arbitrary weight functions, J. Approx. Theory, 162 (2010), 576-598.  doi: 10.1016/j.jat.2009.11.005.  Google Scholar

[11]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979.  Google Scholar

[12]

F. Cucker and D.-X. Zhou, Learning theory: An approximation theory viewpoint, Cambridge Monographs on Applied and Computational Mathematics, 24, Cambridge University Press, Cambridge, 2007. doi: 10.1017/CBO9780511618796.  Google Scholar

[13]

H. GonskaM. Heilmann and I. Raşa, Kantorovich operators of order $k$, Numer. Funct. Anal. Optim., 32 (2011), 717-738.  doi: 10.1080/01630563.2011.580877.  Google Scholar

[14]

H. GonskaI. Raşa and M.-D. Rusu, Applications of an Ostrowski-type inequality, J. Comput. Anal. Appl., 14 (2012), 19-31.   Google Scholar

[15]

M. Heilmann and I. Raşa, Eigenstructure and iterates for uniquely ergodic Kantorovich modifications of operators, Positivity, 21 (2017), 897-910.  doi: 10.1007/s11117-016-0441-1.  Google Scholar

[16]

M. Heilmann and I. Raşa, $C_0$-semigroups associated with uniquely ergodic Kantorovich modifications of operators, Positivity, 22 (2018), 829-835.  doi: 10.1007/s11117-017-0547-0.  Google Scholar

[17]

J. G. Kemeny and J. L. Snell, Finite Markov Chains, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976.  Google Scholar

[18]

U. Krengel, Ergodic Theorems, De Gruyter Studies in Mathematics, 6, Walter de Gruyter & Co., Berlin, 1985. doi: 10.1515/9783110844641.  Google Scholar

[19]

D. H. Mache and D. X. Zhou, Characterization theorems for the approximation by a family of operators, J. Approx. Theory, 84 (1996), 145-161.  doi: 10.1006/jath.1996.0012.  Google Scholar

[20]

D.-X. Zhou, Converse theorems for multidimensional Kantorovich operators, Anal. Math., 19 (1993), 85-100.  doi: 10.1007/BF01904041.  Google Scholar

[21]

D.-X. Zhou and K. Jetter, Approximation with polynomial kernels and SVM classifiers, Adv. Comput. Math., 25 (2006), 323-344.  doi: 10.1007/s10444-004-7206-2.  Google Scholar

[1]

Ling-Xiong Han, Wen-Hui Li, Feng Qi. Approximation by multivariate Baskakov–Kantorovich operators in Orlicz spaces. Electronic Research Archive, 2020, 28 (2) : 721-738. doi: 10.3934/era.2020037

[2]

Lucian Coroianu, Danilo Costarelli, Sorin G. Gal, Gianluca Vinti. Approximation by multivariate max-product Kantorovich-type operators and learning rates of least-squares regularized regression. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4213-4225. doi: 10.3934/cpaa.2020189

[3]

Paola Mannucci, Claudio Marchi, Nicoletta Tchou. Asymptotic behaviour for operators of Grushin type: Invariant measure and singular perturbations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 119-128. doi: 10.3934/dcdss.2019008

[4]

Simon Lloyd, Edson Vargas. Critical covering maps without absolutely continuous invariant probability measure. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2393-2412. doi: 10.3934/dcds.2019101

[5]

Andrea Tosin, Paolo Frasca. Existence and approximation of probability measure solutions to models of collective behaviors. Networks & Heterogeneous Media, 2011, 6 (3) : 561-596. doi: 10.3934/nhm.2011.6.561

[6]

Hisayoshi Toyokawa. $\sigma$-finite invariant densities for eventually conservative Markov operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (5) : 2641-2669. doi: 10.3934/dcds.2020144

[7]

Yaiza Canzani, A. Rod Gover, Dmitry Jakobson, Raphaël Ponge. Nullspaces of conformally invariant operators. Applications to $\boldsymbol{Q_k}$-curvature. Electronic Research Announcements, 2013, 20: 43-50. doi: 10.3934/era.2013.20.43

[8]

David Gómez-Ullate, Niky Kamran, Robert Milson. Structure theorems for linear and non-linear differential operators admitting invariant polynomial subspaces. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 85-106. doi: 10.3934/dcds.2007.18.85

[9]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2019  doi: 10.3934/dcdss.2020213

[10]

Benedetto Piccoli, Francesco Rossi. Measure dynamics with Probability Vector Fields and sources. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6207-6230. doi: 10.3934/dcds.2019270

[11]

Harish Garg. Some robust improved geometric aggregation operators under interval-valued intuitionistic fuzzy environment for multi-criteria decision-making process. Journal of Industrial & Management Optimization, 2018, 14 (1) : 283-308. doi: 10.3934/jimo.2017047

[12]

Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185

[13]

Xingwang Xu, Paul C. Yang. Positivity of Paneitz operators. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 329-342. doi: 10.3934/dcds.2001.7.329

[14]

Dag Lukkassen, Annette Meidell, Peter Wall. Multiscale homogenization of monotone operators. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 711-727. doi: 10.3934/dcds.2008.22.711

[15]

Augusto VisintiN. On the variational representation of monotone operators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046

[16]

Vincenzo Recupero. Hysteresis operators in metric spaces. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 773-792. doi: 10.3934/dcdss.2015.8.773

[17]

Ana-Maria Acu, Madalina Dancs, Voichiţa Adriana Radu. Representations for the inverses of certain operators. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4097-4109. doi: 10.3934/cpaa.2020182

[18]

Shay Kels, Nira Dyn. Bernstein-type approximation of set-valued functions in the symmetric difference metric. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1041-1060. doi: 10.3934/dcds.2014.34.1041

[19]

Rua Murray. Approximation error for invariant density calculations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 535-557. doi: 10.3934/dcds.1998.4.535

[20]

Jonathan C. Mattingly, Etienne Pardoux. Invariant measure selection by noise. An example. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4223-4257. doi: 10.3934/dcds.2014.34.4223

 Impact Factor: 

Metrics

  • PDF downloads (27)
  • HTML views (90)
  • Cited by (0)

Other articles
by authors

[Back to Top]