November  2020, 3(4): 249-262. doi: 10.3934/mfc.2020011

Network centralities, demographic disparities, and voluntary participation

1. 

Assistant Professor, Department of Sociology, The University of British Columbia, Vancouver, BC, V6T 1Z1, Canada

2. 

Associate Professor, Guanghua School of Management, Peking University, Beijing, 100871, China

3. 

Assistant Professor, Urban Studies Program and School of Public Policy, Simon Fraser University, Vancouver, BC, V6B 5K3, Canada

4. 

Associate Professor, Center for Population and Development Studies, Renmin University, Beijing, 100872, China

* Corresponding author: Qiang Fu

Received  October 2019 Revised  March 2020 Published  November 2020 Early access  June 2020

Fund Project: The first author is supported by The Lincoln Institute of Land Policy

This article explores racial and gender disparities in civic-network centrality using various social network methods and regression models. We find that civic networks of women and whites exhibit greater network centrality than their counterparts do. Religious organizations are the hub of civic networks, while labor unions and ethnic/civil-rights organizations are more peripheral. Whites tend to have job-related and nondomestic organizations as the core of their civic network. Women rely on domestic organizations and show little advantage over men in overlapping memberships of voluntary associations. These findings provide a more holistic view of racial and gender disparities in social networks.

Citation: Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011
References:
[1]

G. AlmgrenM. Magarati and L. Mogford, Examining the influences of gender, race, ethnicity, and social capital on the subjective health of adolescents, J. Adolesc., 32 (2009), 109-133.  doi: 10.1016/j.adolescence.2007.11.003.

[2]

A. F. Aveni, Organizational linkages and resource moblization: The significance of linkage strength and breadth, The Sociological Quarterly, 19 (1978), 185-202.  doi: 10.1111/j.1533-8525.1978.tb01164.x.

[3]

D. Baldassarri and M. Diani, The integrative power of civic networks, American Journal of Sociology, 113 (2007), 735-780.  doi: 10.1086/521839.

[4]

K. Beyerlein and J. R. Hipp, From pews to participation: The effect of congregation activity and context on bridging civic engagement, Social Problems, 53 (2006), 97-117. 

[5]

S. P. Borgatti, M. G. Everett and L. C. Freeman, Ucinet 6 for Windows: Software for Social Network Analysis, Analytic Technologies, Cambridge, MA, 2002.

[6]

H. E. BradyS. Verba and K. L. Schlozman, Beyond ses: A resource model of political participation, American Political Science Review, 89 (1995), 271-294.  doi: 10.2307/2082425.

[7]

R. L. Breiger, The duality of persons and groups, Social Forces, 53 (1974), 181-190.  doi: 10.2307/2576011.

[8]

C. BuchmannT. A. DiPrete and A. McDaniel, Gender inequalities in education, Annual Review Sociolology, 34 (2008), 319-337.  doi: 10.1146/annurev.soc.34.040507.134719.

[9]

W. K. Carroll and R. S. Ratner, Master framing and cross-movement networking in contemporary social movements, The Sociological Quarterly, 37 (1996), 601-625. 

[10]

H. Coffe and B. Geys, Measuring the bridging nature of voluntary organizations: The importance of association size, Sociology, 42 (2008), 357-369.  doi: 10.1177/0038038507087359.

[11] J. S. Coleman, Introduction to Mathematical Sociology, Free Press, New York, 1964. 
[12]

B. Cornwell and J. A. Harrison, Union members and voluntary associations: Membership overlap as a case of organizational embeddedness, American Sociological Review, 69 (2004), 862-881. 

[13]

M. Diani, Leaders or brokers, in Social Movements and Networks, Oxford University Press, Oxford, 2003,105–122. doi: 10.1093/0199251789.001.0001.

[14]

C. S. Fischer, On urban alienations and anomie: Powerlessness and social isolation, American Sociological Review, (1973), 311–326.

[15]

L. C. Freeman, Centrality in social networks conceptual clarification, Social Networks, 1 (1978), 215-239. 

[16]

Q. FuX. Guo and K. C. Land, A Poisson-multinomial mixture approach to grouped and right-censored counts, Communications in Statistics-Theory and Methods, 47 (2018), 427-447.  doi: 10.1080/03610926.2017.1303736.

[17]

Q. Fu, X. Guo and K. C. Land, Optimizing count responses in surveys: A machine-learning approach, Sociological Methods & Research, (2020). doi: 10.1177/0049124117747302.

[18]

Q. Fu, How does the neighborhood inform activism? Civic engagement in urban transformation, Journal of Environmental Psychology, 63 (2019), 1-8. 

[19]

Q. Fu and K. C. Land, Does urbanisation matter? A temporal analysis of the socio-demographic gradient in the rising adulthood overweight epidemic in China, 1989–2009, Population, Space and Place, 23 (2017), 1-17.  doi: 10.1002/psp.1970.

[20]

Q. FuK. C. Land and V. L. Lamb, Bullying victimization, socioeconomic status and behavioral characteristics of 12th graders in the United States, 1989 to 2009: Repetitive trends and persistent risk differentials, Child Indicators Research, 6 (2013), 1-21.  doi: 10.1007/s12187-012-9152-8.

[21]

Q. FuK. C. Land and V. L. Lamb, Violent physical bullying victimization at school: Has there been a recent increase in exposure or intensity? An age-period-cohort analysis in the United States, 1991 to 2012, Child Indicators Research, 9 (2016), 485-513.  doi: 10.1007/s12187-015-9317-3.

[22]

Q. Fu and N. Lin, The weaknesses of civic territorial organizations: Civic engagement and homeowners associations in urban China, International Journal of Urban and Regional Research, 38 (2014), 2309-2327. 

[23]

Q. Fu and Q. Ren, Educational inequality under China's rural-urban divide: The Hukou system and return to education, Environment and Planning A, 42 (2010), 592-610.  doi: 10.1068/a42101.

[24]

Q. FuC. WuH. LiuZ. Shi and J. Gu, Live like mosquitoes: Hukou, rural-urban disparity, and depression, Chinese Journal of Sociology, 4 (2018), 56-78.  doi: 10.1177/2057150X17748313.

[25]

A. Fung, Associations and democracy: Between theories, hopes, and realities, Annual Review of Sociology, 29 (2003), 515-539.  doi: 10.1146/annurev.soc.29.010202.100134.

[26]

W. A. Gamson, The Strategy of Social Protest, The Dorsey Press, Homewood, IL, 1975.

[27]

J. Ginn and S. Arber, Gender, class and income inequalities in later life, British Journal of Sociology, 42 (1991), 369-396.  doi: 10.2307/591186.

[28]

R. M. Groves, F. Fowler Jr., M. Couper, J. Lepkowski, E. Sniger and R. Tourangeau, Survey Methodology, Wiley & Sons, New York, 2004.

[29]

R. Gulati and M. Gargiulo, Where do interorganizational networks come from?, American Journal of Sociology, 104 (1999), 1439-1493.  doi: 10.1086/210179.

[30]

R. Gulati and M. Sytch, Dependence asymmetry and joint dependence in interorganziational relationships, Administrative Science Quarterly, 52 (2007), 32-69. 

[31]

R. A. Hanneman and M. Riddle, Introduction to Social Network Methods, University of California, Riverside, CA, 2005.

[32]

M. Hunter, "If you're light you're alright" light skin color as social capital for women of color, Gender & Society, 16 (2002), 175-193.  doi: 10.1177/08912430222104895.

[33]

J. C. Jenkins, Resource mobilization theory and the study of social movements, Annual Review of Sociology, 9 (1983), 527-553. 

[34]

F. L. Jones, Sources of gender inequality in income: What the Australian Census says, Social Forces, 62 (1983), 134-152.  doi: 10.2307/2578352.

[35]

D. Knoke, Associations and interest groups, Annual Review of Sociology, 12 (1986), 1-21. 

[36]

K. C. Land, V. L. Lamb, S. Meadows, H. Zheng and Q. Fu, The CWI and its components: Empirical studies and findings, in The Well-Being of America's Children, Springer, New York, 2012, 29–75. doi: 10.1007/978-94-007-4092-1_3.

[37]

K. L. LandP. L. McCall and D. S. Nagin, A comparison of Poisson, negative binomial, and semiparametric mixed Poisson regression models with empirical applications to criminal careers data, Sociological Methods & Research, 24 (1996), 387-442.  doi: 10.1177/0049124101029003004.

[38]

J. S. Long and J. Freese, Regression Models for Categorical Dependent Variables Using Stata, Stata Press, College Station, 2006.

[39]

G. MarwellP. E. Oliver and R. Prahl, Social Networks and Collective Action: A Theory of the Critical Mass. III, American Journal of Sociology, 94 (1988), 502-534. 

[40]

D. S. Massey and N. A. Denton, The dimensions of residential segregation, Social Forces, 67 (1988), 281-315.  doi: 10.2307/2579183.

[41]

J. D. McCarthy and M. N. Zald, Resource mobilization and social movements: A partial theory, American Journal of Sociology, 82 (1977), 1212-1241. 

[42]

S. McDonald and J. C. Day, Race, gender, and the invisible hand of social capital, Sociology Compass, 4 (2010), 532-543.  doi: 10.1111/j.1751-9020.2010.00298.x.

[43]

J. M. McPherson, Hypernetwork sampling: Duality and differentiation among voluntary organizations, Social Networks, 3 (1982), 225-249.  doi: 10.1016/S0304-422X(01)80005-X.

[44]

J. M. McPherson and D. L. Smith-Lovin, Women and weak ties: Differences by sex in the size of voluntary associations, American Journal of Sociology, 87 (1982), 883-904. 

[45]

M. McPhersonL. Smith-Lovin and M. E. Brashears, Social isolation in America: Changes in core discussion networks over two decades, American Sociological Review, 71 (2006), 353-375.  doi: 10.1177/000312240607100301.

[46]

J. Moody, Race, school integration, and friendship segregation in America, American Journal of Sociology, 107 (2001), 679-716.  doi: 10.1086/338954.

[47]

J. Moody and D. R. White, Structural cohesion and embeddedness: A hierarchical concept of social groups, American Sociological Review, (2003), 103–127. doi: 10.2307/3088904.

[48]

P. Paxton, Social capital and democracy: An interdependent relationship, American Sociological Review, 67 (2002), 254-277.  doi: 10.2307/3088895.

[49]

P. A. Popielarz, Voluntary association: A multilevel analysis of gender segregation in voluntary organizations, Gender and Society, 13 (1999), 234-250.  doi: 10.1177/089124399013002005.

[50]

P. A. Popielarz and and J. M. McPherson, On the edge or in between: Niche position, niche overlap and the duration of voluntary association memberships, American Journal of Sociology, 101 (1995), 628-720. 

[51]

W. R. Poster, The challenges and promises of class and racial diversity in the women's movement: A study of two women's organziations, Gender and Society, 9 (1995), 659-679.  doi: 10.1177/089124395009006002.

[52]

R. D. Putnam, Bowling alone: America's declining social capital, Journal of Democracy, 6 (1995), 65-78. 

[53]

T. J. Rowley and M. Moldoveanu, When will stakeholder groups act? An interest-and-identity-based model of stakeholder group mobilization, Academy of Management Review, 28 (2003), 204-219.  doi: 10.2307/30040709.

[54]

D. H. Smith, Voluntary action and voluntary groups, Annual Review of Sociology, 1 (1975), 247-270.  doi: 10.1146/annurev.so.01.080175.001335.

[55]

S. S. Smith, Mobilizing social resources: Race, ethnic, and gender differences in social capital and persisting wage inequalities, The Sociological Quarterly, 41 (2000), 509-537. 

[56]

T. A. B. Snijders, The degree variance: An index of graph heterogeneity, Social Networks, 3 (1981), 163-174.  doi: 10.1016/0378-8733(81)90014-9.

[57]

D. A. SnowL. A. Zurcher and S. Ekland-Olson, Social networks and social movements: A microstrucural approach to differential recruitment, American Sociological Review, 45 (1980), 787-801.  doi: 10.2307/2094895.

[58]

S. VerbaK. L. SchlozmanH. Brady and N. H. Nie, Race, ethnicity and political resources: Participation in the United States, British Journal of Political Science, 23 (1993), 453-497. 

[59]

S. Wasserman, Social Network Analysis: Methods and Applications, Cambridge University Press, New York, 1994. doi: 10.1017/CBO9780511815478.

[60]

W. J. Wilson, The Truly Disadvantaged: The Inner City, the Underclass, and Public Policy, University of Chicago Press, Chicago, 2012.

[61]

M. N. Zald and J. D. McCarthy, Social Movements in an Organizational Society, Transaction, New Brunswick, NJ, 1987.

[62]

Y. ZhuW. Breitung and S. Li, The changing meaning of neighbourhood attachment in Chinese commodity housing estates: Evidence from Guangzhou, Urban Studies, 49 (2012), 2439-2457.  doi: 10.1177/0042098011427188.

[63]

Y. Zhu and Q. Fu, Deciphering the civic virtue of communal space: Neighborhood attachment, social capital, and neighborhood participation in urban China, Environment and Behavior, 49 (2017), 161-191.  doi: 10.1177/0013916515627308.

show all references

References:
[1]

G. AlmgrenM. Magarati and L. Mogford, Examining the influences of gender, race, ethnicity, and social capital on the subjective health of adolescents, J. Adolesc., 32 (2009), 109-133.  doi: 10.1016/j.adolescence.2007.11.003.

[2]

A. F. Aveni, Organizational linkages and resource moblization: The significance of linkage strength and breadth, The Sociological Quarterly, 19 (1978), 185-202.  doi: 10.1111/j.1533-8525.1978.tb01164.x.

[3]

D. Baldassarri and M. Diani, The integrative power of civic networks, American Journal of Sociology, 113 (2007), 735-780.  doi: 10.1086/521839.

[4]

K. Beyerlein and J. R. Hipp, From pews to participation: The effect of congregation activity and context on bridging civic engagement, Social Problems, 53 (2006), 97-117. 

[5]

S. P. Borgatti, M. G. Everett and L. C. Freeman, Ucinet 6 for Windows: Software for Social Network Analysis, Analytic Technologies, Cambridge, MA, 2002.

[6]

H. E. BradyS. Verba and K. L. Schlozman, Beyond ses: A resource model of political participation, American Political Science Review, 89 (1995), 271-294.  doi: 10.2307/2082425.

[7]

R. L. Breiger, The duality of persons and groups, Social Forces, 53 (1974), 181-190.  doi: 10.2307/2576011.

[8]

C. BuchmannT. A. DiPrete and A. McDaniel, Gender inequalities in education, Annual Review Sociolology, 34 (2008), 319-337.  doi: 10.1146/annurev.soc.34.040507.134719.

[9]

W. K. Carroll and R. S. Ratner, Master framing and cross-movement networking in contemporary social movements, The Sociological Quarterly, 37 (1996), 601-625. 

[10]

H. Coffe and B. Geys, Measuring the bridging nature of voluntary organizations: The importance of association size, Sociology, 42 (2008), 357-369.  doi: 10.1177/0038038507087359.

[11] J. S. Coleman, Introduction to Mathematical Sociology, Free Press, New York, 1964. 
[12]

B. Cornwell and J. A. Harrison, Union members and voluntary associations: Membership overlap as a case of organizational embeddedness, American Sociological Review, 69 (2004), 862-881. 

[13]

M. Diani, Leaders or brokers, in Social Movements and Networks, Oxford University Press, Oxford, 2003,105–122. doi: 10.1093/0199251789.001.0001.

[14]

C. S. Fischer, On urban alienations and anomie: Powerlessness and social isolation, American Sociological Review, (1973), 311–326.

[15]

L. C. Freeman, Centrality in social networks conceptual clarification, Social Networks, 1 (1978), 215-239. 

[16]

Q. FuX. Guo and K. C. Land, A Poisson-multinomial mixture approach to grouped and right-censored counts, Communications in Statistics-Theory and Methods, 47 (2018), 427-447.  doi: 10.1080/03610926.2017.1303736.

[17]

Q. Fu, X. Guo and K. C. Land, Optimizing count responses in surveys: A machine-learning approach, Sociological Methods & Research, (2020). doi: 10.1177/0049124117747302.

[18]

Q. Fu, How does the neighborhood inform activism? Civic engagement in urban transformation, Journal of Environmental Psychology, 63 (2019), 1-8. 

[19]

Q. Fu and K. C. Land, Does urbanisation matter? A temporal analysis of the socio-demographic gradient in the rising adulthood overweight epidemic in China, 1989–2009, Population, Space and Place, 23 (2017), 1-17.  doi: 10.1002/psp.1970.

[20]

Q. FuK. C. Land and V. L. Lamb, Bullying victimization, socioeconomic status and behavioral characteristics of 12th graders in the United States, 1989 to 2009: Repetitive trends and persistent risk differentials, Child Indicators Research, 6 (2013), 1-21.  doi: 10.1007/s12187-012-9152-8.

[21]

Q. FuK. C. Land and V. L. Lamb, Violent physical bullying victimization at school: Has there been a recent increase in exposure or intensity? An age-period-cohort analysis in the United States, 1991 to 2012, Child Indicators Research, 9 (2016), 485-513.  doi: 10.1007/s12187-015-9317-3.

[22]

Q. Fu and N. Lin, The weaknesses of civic territorial organizations: Civic engagement and homeowners associations in urban China, International Journal of Urban and Regional Research, 38 (2014), 2309-2327. 

[23]

Q. Fu and Q. Ren, Educational inequality under China's rural-urban divide: The Hukou system and return to education, Environment and Planning A, 42 (2010), 592-610.  doi: 10.1068/a42101.

[24]

Q. FuC. WuH. LiuZ. Shi and J. Gu, Live like mosquitoes: Hukou, rural-urban disparity, and depression, Chinese Journal of Sociology, 4 (2018), 56-78.  doi: 10.1177/2057150X17748313.

[25]

A. Fung, Associations and democracy: Between theories, hopes, and realities, Annual Review of Sociology, 29 (2003), 515-539.  doi: 10.1146/annurev.soc.29.010202.100134.

[26]

W. A. Gamson, The Strategy of Social Protest, The Dorsey Press, Homewood, IL, 1975.

[27]

J. Ginn and S. Arber, Gender, class and income inequalities in later life, British Journal of Sociology, 42 (1991), 369-396.  doi: 10.2307/591186.

[28]

R. M. Groves, F. Fowler Jr., M. Couper, J. Lepkowski, E. Sniger and R. Tourangeau, Survey Methodology, Wiley & Sons, New York, 2004.

[29]

R. Gulati and M. Gargiulo, Where do interorganizational networks come from?, American Journal of Sociology, 104 (1999), 1439-1493.  doi: 10.1086/210179.

[30]

R. Gulati and M. Sytch, Dependence asymmetry and joint dependence in interorganziational relationships, Administrative Science Quarterly, 52 (2007), 32-69. 

[31]

R. A. Hanneman and M. Riddle, Introduction to Social Network Methods, University of California, Riverside, CA, 2005.

[32]

M. Hunter, "If you're light you're alright" light skin color as social capital for women of color, Gender & Society, 16 (2002), 175-193.  doi: 10.1177/08912430222104895.

[33]

J. C. Jenkins, Resource mobilization theory and the study of social movements, Annual Review of Sociology, 9 (1983), 527-553. 

[34]

F. L. Jones, Sources of gender inequality in income: What the Australian Census says, Social Forces, 62 (1983), 134-152.  doi: 10.2307/2578352.

[35]

D. Knoke, Associations and interest groups, Annual Review of Sociology, 12 (1986), 1-21. 

[36]

K. C. Land, V. L. Lamb, S. Meadows, H. Zheng and Q. Fu, The CWI and its components: Empirical studies and findings, in The Well-Being of America's Children, Springer, New York, 2012, 29–75. doi: 10.1007/978-94-007-4092-1_3.

[37]

K. L. LandP. L. McCall and D. S. Nagin, A comparison of Poisson, negative binomial, and semiparametric mixed Poisson regression models with empirical applications to criminal careers data, Sociological Methods & Research, 24 (1996), 387-442.  doi: 10.1177/0049124101029003004.

[38]

J. S. Long and J. Freese, Regression Models for Categorical Dependent Variables Using Stata, Stata Press, College Station, 2006.

[39]

G. MarwellP. E. Oliver and R. Prahl, Social Networks and Collective Action: A Theory of the Critical Mass. III, American Journal of Sociology, 94 (1988), 502-534. 

[40]

D. S. Massey and N. A. Denton, The dimensions of residential segregation, Social Forces, 67 (1988), 281-315.  doi: 10.2307/2579183.

[41]

J. D. McCarthy and M. N. Zald, Resource mobilization and social movements: A partial theory, American Journal of Sociology, 82 (1977), 1212-1241. 

[42]

S. McDonald and J. C. Day, Race, gender, and the invisible hand of social capital, Sociology Compass, 4 (2010), 532-543.  doi: 10.1111/j.1751-9020.2010.00298.x.

[43]

J. M. McPherson, Hypernetwork sampling: Duality and differentiation among voluntary organizations, Social Networks, 3 (1982), 225-249.  doi: 10.1016/S0304-422X(01)80005-X.

[44]

J. M. McPherson and D. L. Smith-Lovin, Women and weak ties: Differences by sex in the size of voluntary associations, American Journal of Sociology, 87 (1982), 883-904. 

[45]

M. McPhersonL. Smith-Lovin and M. E. Brashears, Social isolation in America: Changes in core discussion networks over two decades, American Sociological Review, 71 (2006), 353-375.  doi: 10.1177/000312240607100301.

[46]

J. Moody, Race, school integration, and friendship segregation in America, American Journal of Sociology, 107 (2001), 679-716.  doi: 10.1086/338954.

[47]

J. Moody and D. R. White, Structural cohesion and embeddedness: A hierarchical concept of social groups, American Sociological Review, (2003), 103–127. doi: 10.2307/3088904.

[48]

P. Paxton, Social capital and democracy: An interdependent relationship, American Sociological Review, 67 (2002), 254-277.  doi: 10.2307/3088895.

[49]

P. A. Popielarz, Voluntary association: A multilevel analysis of gender segregation in voluntary organizations, Gender and Society, 13 (1999), 234-250.  doi: 10.1177/089124399013002005.

[50]

P. A. Popielarz and and J. M. McPherson, On the edge or in between: Niche position, niche overlap and the duration of voluntary association memberships, American Journal of Sociology, 101 (1995), 628-720. 

[51]

W. R. Poster, The challenges and promises of class and racial diversity in the women's movement: A study of two women's organziations, Gender and Society, 9 (1995), 659-679.  doi: 10.1177/089124395009006002.

[52]

R. D. Putnam, Bowling alone: America's declining social capital, Journal of Democracy, 6 (1995), 65-78. 

[53]

T. J. Rowley and M. Moldoveanu, When will stakeholder groups act? An interest-and-identity-based model of stakeholder group mobilization, Academy of Management Review, 28 (2003), 204-219.  doi: 10.2307/30040709.

[54]

D. H. Smith, Voluntary action and voluntary groups, Annual Review of Sociology, 1 (1975), 247-270.  doi: 10.1146/annurev.so.01.080175.001335.

[55]

S. S. Smith, Mobilizing social resources: Race, ethnic, and gender differences in social capital and persisting wage inequalities, The Sociological Quarterly, 41 (2000), 509-537. 

[56]

T. A. B. Snijders, The degree variance: An index of graph heterogeneity, Social Networks, 3 (1981), 163-174.  doi: 10.1016/0378-8733(81)90014-9.

[57]

D. A. SnowL. A. Zurcher and S. Ekland-Olson, Social networks and social movements: A microstrucural approach to differential recruitment, American Sociological Review, 45 (1980), 787-801.  doi: 10.2307/2094895.

[58]

S. VerbaK. L. SchlozmanH. Brady and N. H. Nie, Race, ethnicity and political resources: Participation in the United States, British Journal of Political Science, 23 (1993), 453-497. 

[59]

S. Wasserman, Social Network Analysis: Methods and Applications, Cambridge University Press, New York, 1994. doi: 10.1017/CBO9780511815478.

[60]

W. J. Wilson, The Truly Disadvantaged: The Inner City, the Underclass, and Public Policy, University of Chicago Press, Chicago, 2012.

[61]

M. N. Zald and J. D. McCarthy, Social Movements in an Organizational Society, Transaction, New Brunswick, NJ, 1987.

[62]

Y. ZhuW. Breitung and S. Li, The changing meaning of neighbourhood attachment in Chinese commodity housing estates: Evidence from Guangzhou, Urban Studies, 49 (2012), 2439-2457.  doi: 10.1177/0042098011427188.

[63]

Y. Zhu and Q. Fu, Deciphering the civic virtue of communal space: Neighborhood attachment, social capital, and neighborhood participation in urban China, Environment and Behavior, 49 (2017), 161-191.  doi: 10.1177/0013916515627308.

Figure 1.  Bonacich power centrality scores for civic networks by gender

Note: The centrality scores are normalized by the highest centrality in each network

Figure 2.  Bonacich power centrality scores for civic networks by race

Note: The centrality scores are normalized by the highest centrality in each network

Figure 3.  The civic network connected by overlapping memberships

Note: The node (or actor) size is proportionate to its degree centrality of each node. The tie width is proportionate to the tie strength, or the number of overlapping members between two given nodes

Figure 4.  Multi-dimensional scaling solution of civic networks by gender
Figure 5.  Multi-dimensional scaling solution of civic networks by race
Table 1.  Membership percentages of nine types of organizations and degree centralization
Organization type Membership percentages
All Male Female Whites Blacks Latinos
Religious groups 38% 34% 42% 42% 40% 25%
Charities 25% 23% 27% 27% 28% 15%
School and PTA 24% 17% 31% 25% 32% 21%
Professional organizations 23% 24% 22% 26% 19% 11%
Political parties 23% 23% 22% 26% 17% 11%
Leisure and sports groups 22% 25% 19% 24% 16% 13%
Neighborhood organizations 13% 13% 13% 13% 19% 8%
Labor unions 12% 15% 9% 12% 17% 6%
Ethnic/civil rights 3% 4% 3% 2% 9% 3%
Freeman degree centrality 23.56 27.27 26.1 25.01 25.28
Network heterogeneity 1.59 2.18 2.24 0.92 1.77
Organization type Membership percentages
All Male Female Whites Blacks Latinos
Religious groups 38% 34% 42% 42% 40% 25%
Charities 25% 23% 27% 27% 28% 15%
School and PTA 24% 17% 31% 25% 32% 21%
Professional organizations 23% 24% 22% 26% 19% 11%
Political parties 23% 23% 22% 26% 17% 11%
Leisure and sports groups 22% 25% 19% 24% 16% 13%
Neighborhood organizations 13% 13% 13% 13% 19% 8%
Labor unions 12% 15% 9% 12% 17% 6%
Ethnic/civil rights 3% 4% 3% 2% 9% 3%
Freeman degree centrality 23.56 27.27 26.1 25.01 25.28
Network heterogeneity 1.59 2.18 2.24 0.92 1.77
Table 2.  Results from multinomial logistic regression, Poisson regression and negative-binomial regression on voluntary-organization memberships (N = 2, 456)
Poisson regression Negative-binomial regression Multinomial regression
Zero-inflation Zero-inflation Domes. & Non. Domes. & work Non. & work
Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff.
Whites (ref: Latinos) 0.176** 0.076 0.179** 0.078 0.454** 0.902** 0.151
Blacks (ref: Latinos) 0.329*** 0.205* 0.337*** 0.208* 0.26 1.355*** -0.097
Female (ref: male) 0.069* 0.04 0.069* 0.039 -0.067 0.242 -0.266
Married 0.149*** 0.081* 0.152*** 0.083* 0.277** 0.301 0.117
Age 0.006*** 0.006** 0.006*** 0.006** 0.008 0.015* 0.007
Education c 0.223*** 0.152*** 0.224*** 0.153*** 0.479*** 0.647*** 0.747***
Religious affiliation 0.274*** 0.214*** 0.269*** 0.217*** 0.396** 0.366 -0.603*
Perceived social class 0.141*** 0.164*** 0.142*** 0.166*** 0.431*** 0.335*** 0.244
Annual income 0.007** 0.003 0.007** 0.003 0.017* 0.024* 0.045*
Constant -2.094*** -1.314*** -2.110*** -1.345*** -6.286*** -9.322*** -9.034***
Chi square 492.26*** 245.73*** 467.43*** 237.72*** 357.07***
Pseudo R2 0.072 0.052 0.089
Alpha 0.144 0.017
Vuong test 5.84*** 4.70***
Poisson regression Negative-binomial regression Multinomial regression
Zero-inflation Zero-inflation Domes. & Non. Domes. & work Non. & work
Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff.
Whites (ref: Latinos) 0.176** 0.076 0.179** 0.078 0.454** 0.902** 0.151
Blacks (ref: Latinos) 0.329*** 0.205* 0.337*** 0.208* 0.26 1.355*** -0.097
Female (ref: male) 0.069* 0.04 0.069* 0.039 -0.067 0.242 -0.266
Married 0.149*** 0.081* 0.152*** 0.083* 0.277** 0.301 0.117
Age 0.006*** 0.006** 0.006*** 0.006** 0.008 0.015* 0.007
Education c 0.223*** 0.152*** 0.224*** 0.153*** 0.479*** 0.647*** 0.747***
Religious affiliation 0.274*** 0.214*** 0.269*** 0.217*** 0.396** 0.366 -0.603*
Perceived social class 0.141*** 0.164*** 0.142*** 0.166*** 0.431*** 0.335*** 0.244
Annual income 0.007** 0.003 0.007** 0.003 0.017* 0.024* 0.045*
Constant -2.094*** -1.314*** -2.110*** -1.345*** -6.286*** -9.322*** -9.034***
Chi square 492.26*** 245.73*** 467.43*** 237.72*** 357.07***
Pseudo R2 0.072 0.052 0.089
Alpha 0.144 0.017
Vuong test 5.84*** 4.70***
[1]

Rumi Ghosh, Kristina Lerman. Rethinking centrality: The role of dynamical processes in social network analysis. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1355-1372. doi: 10.3934/dcdsb.2014.19.1355

[2]

Pradeep Dubey, Rahul Garg, Bernard De Meyer. Competing for customers in a social network. Journal of Dynamics and Games, 2014, 1 (3) : 377-409. doi: 10.3934/jdg.2014.1.377

[3]

Weiping Li, Haiyan Wu, Jie Yang. Intelligent recognition algorithm for social network sensitive information based on classification technology. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1385-1398. doi: 10.3934/dcdss.2019095

[4]

Mark G. Burch, Karly A. Jacobsen, Joseph H. Tien, Grzegorz A. Rempała. Network-based analysis of a small Ebola outbreak. Mathematical Biosciences & Engineering, 2017, 14 (1) : 67-77. doi: 10.3934/mbe.2017005

[5]

Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control and Related Fields, 2014, 4 (4) : 521-554. doi: 10.3934/mcrf.2014.4.521

[6]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[7]

Gheorghe Craciun, Baltazar Aguda, Avner Friedman. Mathematical Analysis Of A Modular Network Coordinating The Cell Cycle And Apoptosis. Mathematical Biosciences & Engineering, 2005, 2 (3) : 473-485. doi: 10.3934/mbe.2005.2.473

[8]

Bailey Kacsmar, Douglas R. Stinson. A network reliability approach to the analysis of combinatorial repairable threshold schemes. Advances in Mathematics of Communications, 2019, 13 (4) : 601-612. doi: 10.3934/amc.2019037

[9]

Yacine Chitour, Frédéric Grognard, Georges Bastin. Equilibria and stability analysis of a branched metabolic network with feedback inhibition. Networks and Heterogeneous Media, 2006, 1 (1) : 219-239. doi: 10.3934/nhm.2006.1.219

[10]

Thomas Hillen, Peter Hinow, Zhi-An Wang. Mathematical analysis of a kinetic model for cell movement in network tissues. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1055-1080. doi: 10.3934/dcdsb.2010.14.1055

[11]

Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046

[12]

Palle Jorgensen, James Tian. Harmonic analysis of network systems via kernels and their boundary realizations. Discrete and Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021105

[13]

Shanshan Wang, Yanxia Chen, Taohui Xiao, Lei Zhang, Xin Liu, Hairong Zheng. LANTERN: Learn analysis transform network for dynamic magnetic resonance imaging. Inverse Problems and Imaging, 2021, 15 (6) : 1363-1379. doi: 10.3934/ipi.2020051

[14]

Hasan Hosseini-Nasab, Vahid Ettehadi. Development of opened-network data envelopment analysis models under uncertainty. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022027

[15]

Jiangtao Mo, Liqun Qi, Zengxin Wei. A network simplex algorithm for simple manufacturing network model. Journal of Industrial and Management Optimization, 2005, 1 (2) : 251-273. doi: 10.3934/jimo.2005.1.251

[16]

Konstantin Avrachenkov, Giovanni Neglia, Vikas Vikram Singh. Network formation games with teams. Journal of Dynamics and Games, 2016, 3 (4) : 303-318. doi: 10.3934/jdg.2016016

[17]

Joanna Tyrcha, John Hertz. Network inference with hidden units. Mathematical Biosciences & Engineering, 2014, 11 (1) : 149-165. doi: 10.3934/mbe.2014.11.149

[18]

T. S. Evans, A. D. K. Plato. Network rewiring models. Networks and Heterogeneous Media, 2008, 3 (2) : 221-238. doi: 10.3934/nhm.2008.3.221

[19]

David J. Aldous. A stochastic complex network model. Electronic Research Announcements, 2003, 9: 152-161.

[20]

Suzana Antunović, Tonči Kokan, Tanja Vojković, Damir Vukičević. Exponential generalised network descriptors. Advances in Mathematics of Communications, 2019, 13 (3) : 405-420. doi: 10.3934/amc.2019026

 Impact Factor: 

Metrics

  • PDF downloads (324)
  • HTML views (536)
  • Cited by (0)

Other articles
by authors

[Back to Top]