For linear mixed models with co-variance matrices which are not linearly dependent on variance component parameters, we prove that the average of the observed information and the Fisher information can be split into two parts. The essential part enjoys a simple and computational friendly formula, while the other part which involves a lot of computations is a random zero matrix and thus is negligible.
Citation: |
[1] |
Z. Chen, S. Zhu, Q. Niu and X. Lu, Censorious young: Knowledge discovery from high-throughput movie rating data with LME4, in 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA), 2019, 32–36.
doi: 10.1109/ICBDA.2019.8713193.![]() ![]() |
[2] |
Z. Chen, S. Zhu, Q. Niu and T. Zuo, Knowledge discovery and recommendation with linear mixed model, IEEE Access, 8 (2020), 38304-38317.
doi: 10.1109/ACCESS.2020.2973170.![]() ![]() |
[3] |
B. Efron and D. V. Hinkley, Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information, Biometrika, 65 (1978), 457-483.
doi: 10.1093/biomet/65.3.457.![]() ![]() ![]() |
[4] |
R. A. Fisher, The Genetical Theory of Natural Selection, Oxford University Press, Oxford,
1999.
![]() ![]() |
[5] |
B. Gao, G. Zhan, H. Wang, Y. Wang and S. Zhu, Learning with linear mixed model for group recommendation systems, in Proceedings of the 2019 11th International Conference on Machine Learning and Computing, ICMLC '19, Association for Computing Machinery, New York, NY, 2019, 81–85.
doi: 10.1145/3318299.3318342.![]() ![]() |
[6] |
A. R. Gilmour, R. Thompson and B. R. Cullis, Average information reml: An efficient algorithm for variance parameter estimation in linear mixed models, Biometrics, 51 (1995), 1440-1450.
doi: 10.2307/2533274.![]() ![]() |
[7] |
G. Givens and J. Hoeting, Computational Statistics, 2$^{nd}$ edition, Wiley Series in Computation Statistics, John Wiley & Sons, Inc., Wiley, NJ, 2005.
![]() ![]() |
[8] |
F. N. Gumedze and T. T. Dunne, Parameter estimation and inference in the linear mixed model, Linear Algebra Appl., 435 (2011), 1920-1944.
doi: 10.1016/j.laa.2011.04.015.![]() ![]() ![]() |
[9] |
A. Heavens, Generalised Fisher matrices, Entropy, 18 (2016), 8 pp.
doi: 10.3390/e18060236.![]() ![]() ![]() |
[10] |
W. Janke, D. Johnston and R. Kenna, Information geometry and phase transitions, Physica A: Statistical Mechanics and its Applications, 336 (2004), 181-186.
doi: 10.1016/j.physa.2004.01.023.![]() ![]() ![]() |
[11] |
R. I. Jennrich and P. F. Sampson, Newton-Raphson and related algorithms for maximum likelihood variance component estimation, Technometrics, 18 (1976), 11-17.
doi: 10.2307/1267911.![]() ![]() ![]() |
[12] |
D. Johnson and R. Thompson, Restricted maximum likelihood estimation of variance components for univariate animal models using sparse matrix techniques and average information, Journal of Dairy Science, 78 (1995), 449-456.
doi: 10.3168/jds.S0022-0302(95)76654-1.![]() ![]() |
[13] |
N. T. Longford, A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects, Biometrika, 74 (1987), 817-827.
doi: 10.1093/biomet/74.4.817.![]() ![]() ![]() |
[14] |
K. Meyer, An average information restricted maximum likelihood algorithm for estimating reduced rank genetic covariance matrices or covariance functions for animal models with equal design matrices, Genetics Selection Evolution, 29 (1997), 97.
doi: 10.1186/1297-9686-29-2-97.![]() ![]() |
[15] |
J. I. Myung and D. J. Navarro, Information Matrix, American Cancer Society, 2005.
doi: 10.1002/0470013192.bsa302.![]() ![]() |
[16] |
J. W. Pratt, et al., F. Y. Edgeworth and R. A. Fisher on the efficiency of maximum likelihood estimation, Ann. Statist., 4 (1976), 501-514.
doi: 10.1214/aos/1176343457.![]() ![]() ![]() |
[17] |
M. Prokopenko, J. T. Lizier, O. Obst and X. R. Wang, Relating Fisher information to order parameters, Phys. Rev. E, 84 (2011), 041116.
doi: 10.1103/PhysRevE.84.041116.![]() ![]() |
[18] |
S. R. Searle, G. Casella and C. E. McCulloch, Variance Components, Wiley Series in Probability and Statistics, Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2006.
![]() ![]() |
[19] |
M. Vallisneri, A User Manual for the Fisher Informaiton Matrix, California Institute of Technology, Jet Propulsion Laboratory, 2007.
![]() |
[20] |
R. S. Varga, Matrix Iterative Analysis, expanded edition, Springer Series in Computational Mathematics, 27, Springer-Verlag, Berlin, 2000.
doi: 10.1007/978-3-642-05156-2.![]() ![]() ![]() |
[21] |
Y. Wang, T. Wu, F. Ma and S. Zhu, Personalized recommender systems with multiple source data, in Computing Conference 2020
![]() |
[22] |
S. Welham, S. Zhu and A. J. Wathen, Big Data, Fast Models: Faster Calculation of Models from High-Throughput Biological Data Sets, Knowledge Transfer Report IP12-0009, Smith Institute and The Universtiy of Oxford, Oxford, 2013.
![]() |
[23] |
R. Zamir, A Necessary and Sufficient Condition for Equality in the Matrix Fisher Information Inequality, Technical report, Tel Aviv University, 1997.
![]() ![]() |
[24] |
R. Zamir, A proof of the Fisher information inequality via a data processing argument, IEEE Transactions on Information Theory, 44 (1998), 1246-1250.
doi: 10.1109/18.669301.![]() ![]() ![]() |
[25] |
S. Zhu, T. Gu and X. Liu, Information matrix splitting, preprint, arXiv: 1605.07646.
![]() |
[26] |
S. Zhu and A. J. Wathen, Essential formulae for restricted maximum likelihood and its derivatives associated with the linear mixed models, preprint, arXiv: 1805.05188.
![]() |
[27] |
S. Zhu and A. J. Wathen, Sparse inversion for derivative of log determinant, arXiv: 1911.00685.
![]() |
[28] |
T. Zuo, S. Zhu and J. Lu, A hybrid recommender system combing singular value decomposition and linear mixed model, in Computing Conference 2020, Advance in Intelligent Systems and Computing, Springer International Publishing, Cham, 2020.
![]() |