• Previous Article
    Sparse regularized learning in the reproducing kernel banach spaces with the $ \ell^1 $ norm
  • MFC Home
  • This Issue
  • Next Article
    Averaging versus voting: A comparative study of strategies for distributed classification
August  2020, 3(3): 195-203. doi: 10.3934/mfc.2020019

The nonexistence of global solution for system of q-difference inequalities

School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, China

* Corresponding author: xurun2005@163.com

Received  September 2019 Revised  May 2020 Published  June 2020

Fund Project: The first author is supported by National Science Foundation of China (11671227, 11971015) and the Natural Science Foundation of Shandong Province (ZR2019MA034)

In this paper, we obtain sufficient conditions for the nonexistence of global solutions for the system of $ q $-difference inequalities. Our approach is based on the weak formulation of the problem, a particular choice of the test function, and some $ q $-integral inequalities.

Citation: Yaoyao Luo, Run Xu. The nonexistence of global solution for system of q-difference inequalities. Mathematical Foundations of Computing, 2020, 3 (3) : 195-203. doi: 10.3934/mfc.2020019
References:
[1]

R. P. Agarwal, Certain fractional $q$-integrals and $q$-derivatives, Proc. Cambridge Philos. Soc., 66 (1969), 365-370.  doi: 10.1017/S0305004100045060.  Google Scholar

[2]

P. N. Agrawal and H. S. Kasana, On simultaneous approximation by Szász-Mirakian operators, Bull. Inst. Math. Acad. Sinica, 22 (1994), 181-188.   Google Scholar

[3]

B. Ahmad and S. Ntouyas, Boundary value problems for $q$-difference inclusion, Abstr. Appl. Anal., 2011 (2011), Article ID 292860, 15 pages. Google Scholar

[4]

B. Ahmad, A. Alsaedi and S. K. Ntouyas, A study of second-order $q$-difference equations with boundary conditions, Adv. Difference Equ., 2012 (2012), 1-10. doi: 10.1186/1687-1847-2012-35.  Google Scholar

[5]

B. AhmadJ. J. NietoA. Alsaedi and H. Al-Hutami, Existence of solutions for nonlinear fractional $q$-difference integral equations with two fractional orders and nonlocal four-point boundary conditions, J. Franklin Inst., 351 (2014), 2890-2909.  doi: 10.1016/j.jfranklin.2014.01.020.  Google Scholar

[6]

W. A. Al-Salam, Some fractional $q$-integrals and $q$-derivatives, Proc. Edinburgh Math. Soc., 2 (1966/67), 135-140.  doi: 10.1017/S0013091500011469.  Google Scholar

[7]

H. Aydi, M. Jleli and B. Samet, On the absence of global solutions for some $q$-difference inequalities, Adv. Difference Equ., 2019 (2019), 9 pages. doi: 10.1186/s13662-019-1985-8.  Google Scholar

[8]

A. De Sole and V. G. Kac, On integral representations of $q$-gamma and $q$-beta functions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 16 (2005), 11-29.   Google Scholar

[9]

T. Ernst, A method for $q$-calculus, J. Nonlinear Math. Phys., 10 (2003), 487-525.   Google Scholar

[10]

F. H. Jackson, On $q$-functions and a certain difference operator, Trans. R. Soc. Edinburgh, 46 (1909), 253-281.  doi: 10.1017/S0080456800002751.  Google Scholar

[11]

R. A. C. Ferreira, Positive solutions for a class of boundary value problems with fractional $q$-differences, Comput. Math. Appl., 61 (2011), 367-373.  doi: 10.1016/j.camwa.2010.11.012.  Google Scholar

[12]

M. N. Islam and J. T. Neugebauer, Existence of periodic solutions for a quantum Volterra equation, Adv. Dyn. Syst. Appl., 11 (2016), 67-80.   Google Scholar

[13]

F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-200.   Google Scholar

[14]

L. Jia, J. Cheng and Z. Feng, A $q$-analogue of Kummer's equation, Electron. J. Differential Equations, (2017), Paper No. 31, 1-20.  Google Scholar

[15]

M. JleliM. Kirane and B. Samet, On the absence of global solutions for quantum versions of Schrödinger equations and systems, Comput. Math. Appl., 77 (2019), 740-751.  doi: 10.1016/j.camwa.2018.10.010.  Google Scholar

[16]

V. Kac and P. Cheung, Quantum Calculus, Universitext. Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4613-0071-7.  Google Scholar

[17]

M. D. KassimK. M. Furati and N.-E. Tatar, Non-existence for fractionally damped fractional differential problems, Acta Math. Sci. Ser. B, 37 (2017), 119-130.  doi: 10.1016/S0252-9602(16)30120-5.  Google Scholar

[18]

N. Khodabakhshi and S. M. Vaezpour, Existence and uniqueness of positive solution for a class of boundary value problems with fractional $q$-differences, J. Nonlinear Convex Anal., 16 (2015), 375-384.   Google Scholar

[19]

M. Kirane and N.-E. Tatar, Nonexistence of solutions to a hyperbolic equation with a time fractional damping, Z. Anal. Anwend., 25 (2006), 131-142.  doi: 10.4171/ZAA/1281.  Google Scholar

[20]

M. Kirane and N.-E. Tatar, Absence of local and global solutions to an elliptic system with time-fractional dynamical boundary conditions, Sib. Math. J., 48 (2007), 477-488.  doi: 10.1007/s11202-007-0050-0.  Google Scholar

[21]

È. Mitidieri and S. I. Pohozaev, A priori estimates and nonexistence of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 234 (2001), 1-362.   Google Scholar

[22]

M. D. Qassim, K. M. Furati and N.-E. Tatar, On a differential equation involving Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., 2012 (2012), Article ID 391062, 17 pages. doi: 10.1155/2012/391062.  Google Scholar

[23]

P. M. RajkovićS. D. Marinković and M. S. Stanković, Fractional integrals and derivatives in $q$-calculus, Appl. Anal. Discrete Math., 1 (2007), 311-323.   Google Scholar

[24]

W. Yang, Positive solutions for boundary value problems involving nonlinear fractional $q$-difference equations, Differ. Equ. Appl., 5 (2013), 205-219.  doi: 10.7153/dea-05-13.  Google Scholar

show all references

References:
[1]

R. P. Agarwal, Certain fractional $q$-integrals and $q$-derivatives, Proc. Cambridge Philos. Soc., 66 (1969), 365-370.  doi: 10.1017/S0305004100045060.  Google Scholar

[2]

P. N. Agrawal and H. S. Kasana, On simultaneous approximation by Szász-Mirakian operators, Bull. Inst. Math. Acad. Sinica, 22 (1994), 181-188.   Google Scholar

[3]

B. Ahmad and S. Ntouyas, Boundary value problems for $q$-difference inclusion, Abstr. Appl. Anal., 2011 (2011), Article ID 292860, 15 pages. Google Scholar

[4]

B. Ahmad, A. Alsaedi and S. K. Ntouyas, A study of second-order $q$-difference equations with boundary conditions, Adv. Difference Equ., 2012 (2012), 1-10. doi: 10.1186/1687-1847-2012-35.  Google Scholar

[5]

B. AhmadJ. J. NietoA. Alsaedi and H. Al-Hutami, Existence of solutions for nonlinear fractional $q$-difference integral equations with two fractional orders and nonlocal four-point boundary conditions, J. Franklin Inst., 351 (2014), 2890-2909.  doi: 10.1016/j.jfranklin.2014.01.020.  Google Scholar

[6]

W. A. Al-Salam, Some fractional $q$-integrals and $q$-derivatives, Proc. Edinburgh Math. Soc., 2 (1966/67), 135-140.  doi: 10.1017/S0013091500011469.  Google Scholar

[7]

H. Aydi, M. Jleli and B. Samet, On the absence of global solutions for some $q$-difference inequalities, Adv. Difference Equ., 2019 (2019), 9 pages. doi: 10.1186/s13662-019-1985-8.  Google Scholar

[8]

A. De Sole and V. G. Kac, On integral representations of $q$-gamma and $q$-beta functions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 16 (2005), 11-29.   Google Scholar

[9]

T. Ernst, A method for $q$-calculus, J. Nonlinear Math. Phys., 10 (2003), 487-525.   Google Scholar

[10]

F. H. Jackson, On $q$-functions and a certain difference operator, Trans. R. Soc. Edinburgh, 46 (1909), 253-281.  doi: 10.1017/S0080456800002751.  Google Scholar

[11]

R. A. C. Ferreira, Positive solutions for a class of boundary value problems with fractional $q$-differences, Comput. Math. Appl., 61 (2011), 367-373.  doi: 10.1016/j.camwa.2010.11.012.  Google Scholar

[12]

M. N. Islam and J. T. Neugebauer, Existence of periodic solutions for a quantum Volterra equation, Adv. Dyn. Syst. Appl., 11 (2016), 67-80.   Google Scholar

[13]

F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-200.   Google Scholar

[14]

L. Jia, J. Cheng and Z. Feng, A $q$-analogue of Kummer's equation, Electron. J. Differential Equations, (2017), Paper No. 31, 1-20.  Google Scholar

[15]

M. JleliM. Kirane and B. Samet, On the absence of global solutions for quantum versions of Schrödinger equations and systems, Comput. Math. Appl., 77 (2019), 740-751.  doi: 10.1016/j.camwa.2018.10.010.  Google Scholar

[16]

V. Kac and P. Cheung, Quantum Calculus, Universitext. Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4613-0071-7.  Google Scholar

[17]

M. D. KassimK. M. Furati and N.-E. Tatar, Non-existence for fractionally damped fractional differential problems, Acta Math. Sci. Ser. B, 37 (2017), 119-130.  doi: 10.1016/S0252-9602(16)30120-5.  Google Scholar

[18]

N. Khodabakhshi and S. M. Vaezpour, Existence and uniqueness of positive solution for a class of boundary value problems with fractional $q$-differences, J. Nonlinear Convex Anal., 16 (2015), 375-384.   Google Scholar

[19]

M. Kirane and N.-E. Tatar, Nonexistence of solutions to a hyperbolic equation with a time fractional damping, Z. Anal. Anwend., 25 (2006), 131-142.  doi: 10.4171/ZAA/1281.  Google Scholar

[20]

M. Kirane and N.-E. Tatar, Absence of local and global solutions to an elliptic system with time-fractional dynamical boundary conditions, Sib. Math. J., 48 (2007), 477-488.  doi: 10.1007/s11202-007-0050-0.  Google Scholar

[21]

È. Mitidieri and S. I. Pohozaev, A priori estimates and nonexistence of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 234 (2001), 1-362.   Google Scholar

[22]

M. D. Qassim, K. M. Furati and N.-E. Tatar, On a differential equation involving Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., 2012 (2012), Article ID 391062, 17 pages. doi: 10.1155/2012/391062.  Google Scholar

[23]

P. M. RajkovićS. D. Marinković and M. S. Stanković, Fractional integrals and derivatives in $q$-calculus, Appl. Anal. Discrete Math., 1 (2007), 311-323.   Google Scholar

[24]

W. Yang, Positive solutions for boundary value problems involving nonlinear fractional $q$-difference equations, Differ. Equ. Appl., 5 (2013), 205-219.  doi: 10.7153/dea-05-13.  Google Scholar

[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[3]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[4]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[5]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[6]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[7]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[8]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[9]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[10]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[11]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[12]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[13]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[14]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[15]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[16]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[17]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[18]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[19]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[20]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

 Impact Factor: 

Metrics

  • PDF downloads (59)
  • HTML views (230)
  • Cited by (0)

Other articles
by authors

[Back to Top]