• Previous Article
    Sparse regularized learning in the reproducing kernel banach spaces with the $ \ell^1 $ norm
  • MFC Home
  • This Issue
  • Next Article
    Averaging versus voting: A comparative study of strategies for distributed classification
August  2020, 3(3): 195-203. doi: 10.3934/mfc.2020019

The nonexistence of global solution for system of q-difference inequalities

School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, China

* Corresponding author: xurun2005@163.com

Received  September 2019 Revised  May 2020 Published  June 2020

Fund Project: The first author is supported by National Science Foundation of China (11671227, 11971015) and the Natural Science Foundation of Shandong Province (ZR2019MA034)

In this paper, we obtain sufficient conditions for the nonexistence of global solutions for the system of $ q $-difference inequalities. Our approach is based on the weak formulation of the problem, a particular choice of the test function, and some $ q $-integral inequalities.

Citation: Yaoyao Luo, Run Xu. The nonexistence of global solution for system of q-difference inequalities. Mathematical Foundations of Computing, 2020, 3 (3) : 195-203. doi: 10.3934/mfc.2020019
References:
[1]

R. P. Agarwal, Certain fractional $q$-integrals and $q$-derivatives, Proc. Cambridge Philos. Soc., 66 (1969), 365-370.  doi: 10.1017/S0305004100045060.  Google Scholar

[2]

P. N. Agrawal and H. S. Kasana, On simultaneous approximation by Szász-Mirakian operators, Bull. Inst. Math. Acad. Sinica, 22 (1994), 181-188.   Google Scholar

[3]

B. Ahmad and S. Ntouyas, Boundary value problems for $q$-difference inclusion, Abstr. Appl. Anal., 2011 (2011), Article ID 292860, 15 pages. Google Scholar

[4]

B. Ahmad, A. Alsaedi and S. K. Ntouyas, A study of second-order $q$-difference equations with boundary conditions, Adv. Difference Equ., 2012 (2012), 1-10. doi: 10.1186/1687-1847-2012-35.  Google Scholar

[5]

B. AhmadJ. J. NietoA. Alsaedi and H. Al-Hutami, Existence of solutions for nonlinear fractional $q$-difference integral equations with two fractional orders and nonlocal four-point boundary conditions, J. Franklin Inst., 351 (2014), 2890-2909.  doi: 10.1016/j.jfranklin.2014.01.020.  Google Scholar

[6]

W. A. Al-Salam, Some fractional $q$-integrals and $q$-derivatives, Proc. Edinburgh Math. Soc., 2 (1966/67), 135-140.  doi: 10.1017/S0013091500011469.  Google Scholar

[7]

H. Aydi, M. Jleli and B. Samet, On the absence of global solutions for some $q$-difference inequalities, Adv. Difference Equ., 2019 (2019), 9 pages. doi: 10.1186/s13662-019-1985-8.  Google Scholar

[8]

A. De Sole and V. G. Kac, On integral representations of $q$-gamma and $q$-beta functions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 16 (2005), 11-29.   Google Scholar

[9]

T. Ernst, A method for $q$-calculus, J. Nonlinear Math. Phys., 10 (2003), 487-525.   Google Scholar

[10]

F. H. Jackson, On $q$-functions and a certain difference operator, Trans. R. Soc. Edinburgh, 46 (1909), 253-281.  doi: 10.1017/S0080456800002751.  Google Scholar

[11]

R. A. C. Ferreira, Positive solutions for a class of boundary value problems with fractional $q$-differences, Comput. Math. Appl., 61 (2011), 367-373.  doi: 10.1016/j.camwa.2010.11.012.  Google Scholar

[12]

M. N. Islam and J. T. Neugebauer, Existence of periodic solutions for a quantum Volterra equation, Adv. Dyn. Syst. Appl., 11 (2016), 67-80.   Google Scholar

[13]

F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-200.   Google Scholar

[14]

L. Jia, J. Cheng and Z. Feng, A $q$-analogue of Kummer's equation, Electron. J. Differential Equations, (2017), Paper No. 31, 1-20.  Google Scholar

[15]

M. JleliM. Kirane and B. Samet, On the absence of global solutions for quantum versions of Schrödinger equations and systems, Comput. Math. Appl., 77 (2019), 740-751.  doi: 10.1016/j.camwa.2018.10.010.  Google Scholar

[16]

V. Kac and P. Cheung, Quantum Calculus, Universitext. Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4613-0071-7.  Google Scholar

[17]

M. D. KassimK. M. Furati and N.-E. Tatar, Non-existence for fractionally damped fractional differential problems, Acta Math. Sci. Ser. B, 37 (2017), 119-130.  doi: 10.1016/S0252-9602(16)30120-5.  Google Scholar

[18]

N. Khodabakhshi and S. M. Vaezpour, Existence and uniqueness of positive solution for a class of boundary value problems with fractional $q$-differences, J. Nonlinear Convex Anal., 16 (2015), 375-384.   Google Scholar

[19]

M. Kirane and N.-E. Tatar, Nonexistence of solutions to a hyperbolic equation with a time fractional damping, Z. Anal. Anwend., 25 (2006), 131-142.  doi: 10.4171/ZAA/1281.  Google Scholar

[20]

M. Kirane and N.-E. Tatar, Absence of local and global solutions to an elliptic system with time-fractional dynamical boundary conditions, Sib. Math. J., 48 (2007), 477-488.  doi: 10.1007/s11202-007-0050-0.  Google Scholar

[21]

È. Mitidieri and S. I. Pohozaev, A priori estimates and nonexistence of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 234 (2001), 1-362.   Google Scholar

[22]

M. D. Qassim, K. M. Furati and N.-E. Tatar, On a differential equation involving Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., 2012 (2012), Article ID 391062, 17 pages. doi: 10.1155/2012/391062.  Google Scholar

[23]

P. M. RajkovićS. D. Marinković and M. S. Stanković, Fractional integrals and derivatives in $q$-calculus, Appl. Anal. Discrete Math., 1 (2007), 311-323.   Google Scholar

[24]

W. Yang, Positive solutions for boundary value problems involving nonlinear fractional $q$-difference equations, Differ. Equ. Appl., 5 (2013), 205-219.  doi: 10.7153/dea-05-13.  Google Scholar

show all references

References:
[1]

R. P. Agarwal, Certain fractional $q$-integrals and $q$-derivatives, Proc. Cambridge Philos. Soc., 66 (1969), 365-370.  doi: 10.1017/S0305004100045060.  Google Scholar

[2]

P. N. Agrawal and H. S. Kasana, On simultaneous approximation by Szász-Mirakian operators, Bull. Inst. Math. Acad. Sinica, 22 (1994), 181-188.   Google Scholar

[3]

B. Ahmad and S. Ntouyas, Boundary value problems for $q$-difference inclusion, Abstr. Appl. Anal., 2011 (2011), Article ID 292860, 15 pages. Google Scholar

[4]

B. Ahmad, A. Alsaedi and S. K. Ntouyas, A study of second-order $q$-difference equations with boundary conditions, Adv. Difference Equ., 2012 (2012), 1-10. doi: 10.1186/1687-1847-2012-35.  Google Scholar

[5]

B. AhmadJ. J. NietoA. Alsaedi and H. Al-Hutami, Existence of solutions for nonlinear fractional $q$-difference integral equations with two fractional orders and nonlocal four-point boundary conditions, J. Franklin Inst., 351 (2014), 2890-2909.  doi: 10.1016/j.jfranklin.2014.01.020.  Google Scholar

[6]

W. A. Al-Salam, Some fractional $q$-integrals and $q$-derivatives, Proc. Edinburgh Math. Soc., 2 (1966/67), 135-140.  doi: 10.1017/S0013091500011469.  Google Scholar

[7]

H. Aydi, M. Jleli and B. Samet, On the absence of global solutions for some $q$-difference inequalities, Adv. Difference Equ., 2019 (2019), 9 pages. doi: 10.1186/s13662-019-1985-8.  Google Scholar

[8]

A. De Sole and V. G. Kac, On integral representations of $q$-gamma and $q$-beta functions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 16 (2005), 11-29.   Google Scholar

[9]

T. Ernst, A method for $q$-calculus, J. Nonlinear Math. Phys., 10 (2003), 487-525.   Google Scholar

[10]

F. H. Jackson, On $q$-functions and a certain difference operator, Trans. R. Soc. Edinburgh, 46 (1909), 253-281.  doi: 10.1017/S0080456800002751.  Google Scholar

[11]

R. A. C. Ferreira, Positive solutions for a class of boundary value problems with fractional $q$-differences, Comput. Math. Appl., 61 (2011), 367-373.  doi: 10.1016/j.camwa.2010.11.012.  Google Scholar

[12]

M. N. Islam and J. T. Neugebauer, Existence of periodic solutions for a quantum Volterra equation, Adv. Dyn. Syst. Appl., 11 (2016), 67-80.   Google Scholar

[13]

F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-200.   Google Scholar

[14]

L. Jia, J. Cheng and Z. Feng, A $q$-analogue of Kummer's equation, Electron. J. Differential Equations, (2017), Paper No. 31, 1-20.  Google Scholar

[15]

M. JleliM. Kirane and B. Samet, On the absence of global solutions for quantum versions of Schrödinger equations and systems, Comput. Math. Appl., 77 (2019), 740-751.  doi: 10.1016/j.camwa.2018.10.010.  Google Scholar

[16]

V. Kac and P. Cheung, Quantum Calculus, Universitext. Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4613-0071-7.  Google Scholar

[17]

M. D. KassimK. M. Furati and N.-E. Tatar, Non-existence for fractionally damped fractional differential problems, Acta Math. Sci. Ser. B, 37 (2017), 119-130.  doi: 10.1016/S0252-9602(16)30120-5.  Google Scholar

[18]

N. Khodabakhshi and S. M. Vaezpour, Existence and uniqueness of positive solution for a class of boundary value problems with fractional $q$-differences, J. Nonlinear Convex Anal., 16 (2015), 375-384.   Google Scholar

[19]

M. Kirane and N.-E. Tatar, Nonexistence of solutions to a hyperbolic equation with a time fractional damping, Z. Anal. Anwend., 25 (2006), 131-142.  doi: 10.4171/ZAA/1281.  Google Scholar

[20]

M. Kirane and N.-E. Tatar, Absence of local and global solutions to an elliptic system with time-fractional dynamical boundary conditions, Sib. Math. J., 48 (2007), 477-488.  doi: 10.1007/s11202-007-0050-0.  Google Scholar

[21]

È. Mitidieri and S. I. Pohozaev, A priori estimates and nonexistence of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 234 (2001), 1-362.   Google Scholar

[22]

M. D. Qassim, K. M. Furati and N.-E. Tatar, On a differential equation involving Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., 2012 (2012), Article ID 391062, 17 pages. doi: 10.1155/2012/391062.  Google Scholar

[23]

P. M. RajkovićS. D. Marinković and M. S. Stanković, Fractional integrals and derivatives in $q$-calculus, Appl. Anal. Discrete Math., 1 (2007), 311-323.   Google Scholar

[24]

W. Yang, Positive solutions for boundary value problems involving nonlinear fractional $q$-difference equations, Differ. Equ. Appl., 5 (2013), 205-219.  doi: 10.7153/dea-05-13.  Google Scholar

[1]

Pavel I. Etingof. Galois groups and connection matrices of q-difference equations. Electronic Research Announcements, 1995, 1: 1-9.

[2]

Xuecheng Wang. Global solution for the $3D$ quadratic Schrödinger equation of $Q(u, \bar{u}$) type. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5037-5048. doi: 10.3934/dcds.2017217

[3]

Olga Salieva. On nonexistence of solutions to some nonlinear parabolic inequalities. Communications on Pure & Applied Analysis, 2017, 16 (3) : 843-853. doi: 10.3934/cpaa.2017040

[4]

Xiaohong Li, Fengquan Li. Nonexistence of solutions for nonlinear differential inequalities with gradient nonlinearities. Communications on Pure & Applied Analysis, 2012, 11 (3) : 935-943. doi: 10.3934/cpaa.2012.11.935

[5]

Jin Feng He, Wei Xu, Zhi Guo Feng, Xinsong Yang. On the global optimal solution for linear quadratic problems of switched system. Journal of Industrial & Management Optimization, 2019, 15 (2) : 817-832. doi: 10.3934/jimo.2018072

[6]

Georgia Karali, Takashi Suzuki, Yoshio Yamada. Global-in-time behavior of the solution to a Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2885-2900. doi: 10.3934/dcds.2013.33.2885

[7]

Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237

[8]

Dario D. Monticelli, Fabio Punzo. Nonexistence results for elliptic differential inequalities with a potential in bounded domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 675-695. doi: 10.3934/dcds.2018029

[9]

Anna Cima, Armengol Gasull, Francesc Mañosas. Global linearization of periodic difference equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1575-1595. doi: 10.3934/dcds.2012.32.1575

[10]

De Tang, Yanqin Fang. Regularity and nonexistence of solutions for a system involving the fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2431-2451. doi: 10.3934/cpaa.2015.14.2431

[11]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064

[12]

Fei Chen, Boling Guo, Xiaoping Zhai. Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density. Kinetic & Related Models, 2019, 12 (1) : 37-58. doi: 10.3934/krm.2019002

[13]

Chunxiao Guo, Fan Cui, Yongqian Han. Global existence and uniqueness of the solution for the fractional Schrödinger-KdV-Burgers system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1687-1699. doi: 10.3934/dcdss.2016070

[14]

Masaki Kurokiba, Toshitaka Nagai, T. Ogawa. The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system. Communications on Pure & Applied Analysis, 2006, 5 (1) : 97-106. doi: 10.3934/cpaa.2006.5.97

[15]

Zhongliang Deng, Enwen Hu. Error minimization with global optimization for difference of convex functions. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1027-1033. doi: 10.3934/dcdss.2019070

[16]

Gennady G. Laptev. Some nonexistence results for higher-order evolution inequalities in cone-like domains. Electronic Research Announcements, 2001, 7: 87-93.

[17]

Ewa Schmeidel, Robert Jankowski. Asymptotically zero solution of a class of higher nonlinear neutral difference equations with quasidifferences. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2691-2696. doi: 10.3934/dcdsb.2014.19.2691

[18]

Wenhui Chen, Alessandro Palmieri. Nonexistence of global solutions for the semilinear Moore – Gibson – Thompson equation in the conservative case. Discrete & Continuous Dynamical Systems - A, 2020, 40 (9) : 5513-5540. doi: 10.3934/dcds.2020236

[19]

Xie Li, Zhaoyin Xiang. Existence and nonexistence of local/global solutions for a nonhomogeneous heat equation. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1465-1480. doi: 10.3934/cpaa.2014.13.1465

[20]

Mehdi Badra. Global Carleman inequalities for Stokes and penalized Stokes equations. Mathematical Control & Related Fields, 2011, 1 (2) : 149-175. doi: 10.3934/mcrf.2011.1.149

 Impact Factor: 

Metrics

  • PDF downloads (44)
  • HTML views (150)
  • Cited by (0)

Other articles
by authors

[Back to Top]