August  2020, 3(3): 141-155. doi: 10.3934/mfc.2020021

A fast matching algorithm for the images with large scale disparity

1. 

Computer Science Department, Curtin University, Perth, Australia

2. 

Automation College, Shenyang Aerospace University, Liaoning, China

* Corresponding author: Shichu Chen

Received  October 2019 Revised  March 2020 Published  June 2020

With the expansion of application areas of unmanned aerial vehicle (UAV) applications, there is a rising demand to realize UAV navigation by means of computer vision. Speeded-Up Robust Features (SURF) is an ideal image matching algorithm to be applied to solve the location for UAV. However, if there is a large scale difference between two images with the same scene taken by UAV and satellite respectively, it is difficult to apply SURF to complete the accurate image matching directly. In this paper, a fast image matching algorithm which can bridge the huge scale gap is proposed. The fast matching algorithm searches an optimal scaling ratio based on the ground distance represented by pixel. Meanwhile, a validity index for validating the performance of matching is given. The experimental results illustrate that the proposed algorithm performs better performance both on speed and accuracy. What's more, the proposed algorithm can also obtain the correct matching results on the images with rotation. Therefore, the proposed algorithm could be applied to location and navigation for UAV in future.

Citation: Shichu Chen, Zhiqiang Wang, Yan Ren. A fast matching algorithm for the images with large scale disparity. Mathematical Foundations of Computing, 2020, 3 (3) : 141-155. doi: 10.3934/mfc.2020021
References:
[1]

W. An, R. Yu and Y. Wu, An image registration algorithm based on FAST, RANSAC and SURF, Information Technology and Applications, (2015), 329–333. Google Scholar

[2]

T. C. Ao, X. D. Liu, Y. Ren, R. Luo and J. Xi, An approach to scene matching algorithm for UAV autonomous navigation, Chinese Control and Decision Conference, (2018), 996–1001. doi: 10.1109/CCDC.2018.8407275.  Google Scholar

[3]

F. Bulbul, F. Badsha and R. Islam, Object detection by point feature matching using Matlab, Advances in Image and Video Processing, 6 (2018). doi: 10.14738/aivp.66.5619.  Google Scholar

[4]

M. B. CohenB. T. FasyG. L. MillerA. NayyeriD. R. Sheehy and A. Velingker, Approximating nearest neighbor distances, Algorithms and Data Structures, Lecture Notes in Comput. Sci., Springer, Cham, 9214 (2015), 200-211.  doi: 10.1007/978-3-319-21840-3_17.  Google Scholar

[5]

R. DongM. Liu and F. Li, Multiplayer convolutional feature aggregation algorithm for image retrieval, Mathematical Problems in Engineering, 2019 (2019), 1-12.   Google Scholar

[6]

A. S. Eltanany, M. Safy and A. S. Amein, Key point detection techniques, Advances in Intelligent Systems and Computing, 1058 (2019). doi: 10.1007/978-3-030-31129-2_82.  Google Scholar

[7]

H. Jan, B. Rodrigo and S. Bernt, Learning Non-maximum Suppression, Conference on Computer Vision and Pattern Recognition, (2017), 6469–6477. Google Scholar

[8]

S. Katta, S. Pabboju, A. V. Babu and R. Akhila, CBIR using SIFT with LoG, DoG and PCA, Data Engineering and Communication Technology, (2020), 623–637. Google Scholar

[9]

X. Li, J. Luo, C. Duan and P. Yin, Portrait matching based on sift features, IOP Conference Series: Materials Science and Engineering, 612 (2019), 032162. doi: 10.1088/1757-899X/612/3/032162.  Google Scholar

[10]

X. Li, X. Wang and C. Cheng, Application of scene recognition technology based on faster and surf algorithm in augmented reality, International Conference on Smart and Sustainable City, (2017), 23. Google Scholar

[11]

L. Liberti and C. Lavor, Euclidean Distance Geometry: An introduction, Springer Undergraduate Texts in Mathematics and Technology, Springer, Cham, 2017. doi: 10.1007/978-3-319-60792-4.  Google Scholar

[12]

X. LiuX. Tao and N. Ge, Fast remote-sensing image registration using priori information and robust feature extraction, Tsinghua Science and Technology, 21 (2016), 552-560.   Google Scholar

[13]

Y. L. Liu, H. Zhang, H. L. Guo and N. N. Xiong, A FAST-BRISK feature detector with depth information, Sensors, 18 (2018), 3908. doi: 10.3390/s18113908.  Google Scholar

[14]

L. Tong and X. Ying, 3D point cloud initial registration using surface curvature and SURF matching, 3D Research, 9 (2018). doi: 10.1007/s13319-018-0193-8.  Google Scholar

[15]

C. Tsai and Y. Lin, An accelerated image matching technique for UAV orthoimage registration, ISPRS Journal of Photogrammetry and Remote Sensing, 128 (2017), 130-145.  doi: 10.1016/j.isprsjprs.2017.03.017.  Google Scholar

[16]

C. Y. WangZ. ZhangQ. W. Li and X. Zhou, An image copy-move forgery detection method based on SURF and PCET, Institute of Electrical and Electronics Engineers, 7 (2019), 170032-170047.  doi: 10.1109/ACCESS.2019.2955308.  Google Scholar

[17]

D. Xiang, B. Zhong and K. Ma, A location-aware scale-space method for salient object detection, International Conference on Image Processing, (2015), 4195–4199. doi: 10.1109/ICIP.2015.7351596.  Google Scholar

[18]

K. Yang, A. N. Pan, Y. Yang, S. Zhang, S. H. Ong and H. L. Tang, Remote sensing image registration using multiple image features, Remote Sensing, 9 (2017), 581. doi: 10.3390/rs9060581.  Google Scholar

[19]

D. Zeng, L. D. Wu, B. Y. Chen and W. Shen, Slope-restricted multi-scale feature matching for geostationary satellite remote sensing images, Remote Sensing, 9 (2017), 576. doi: 10.3390/rs9060576.  Google Scholar

[20]

L. Zhu, Y. Wang, B. Zhao and X. Z. Zhang, A fast image stitching algorithm based on improved SURF, International Conference on Computational Intelligence and Security, (2015), 171–175. doi: 10.1109/CIS.2014.67.  Google Scholar

show all references

References:
[1]

W. An, R. Yu and Y. Wu, An image registration algorithm based on FAST, RANSAC and SURF, Information Technology and Applications, (2015), 329–333. Google Scholar

[2]

T. C. Ao, X. D. Liu, Y. Ren, R. Luo and J. Xi, An approach to scene matching algorithm for UAV autonomous navigation, Chinese Control and Decision Conference, (2018), 996–1001. doi: 10.1109/CCDC.2018.8407275.  Google Scholar

[3]

F. Bulbul, F. Badsha and R. Islam, Object detection by point feature matching using Matlab, Advances in Image and Video Processing, 6 (2018). doi: 10.14738/aivp.66.5619.  Google Scholar

[4]

M. B. CohenB. T. FasyG. L. MillerA. NayyeriD. R. Sheehy and A. Velingker, Approximating nearest neighbor distances, Algorithms and Data Structures, Lecture Notes in Comput. Sci., Springer, Cham, 9214 (2015), 200-211.  doi: 10.1007/978-3-319-21840-3_17.  Google Scholar

[5]

R. DongM. Liu and F. Li, Multiplayer convolutional feature aggregation algorithm for image retrieval, Mathematical Problems in Engineering, 2019 (2019), 1-12.   Google Scholar

[6]

A. S. Eltanany, M. Safy and A. S. Amein, Key point detection techniques, Advances in Intelligent Systems and Computing, 1058 (2019). doi: 10.1007/978-3-030-31129-2_82.  Google Scholar

[7]

H. Jan, B. Rodrigo and S. Bernt, Learning Non-maximum Suppression, Conference on Computer Vision and Pattern Recognition, (2017), 6469–6477. Google Scholar

[8]

S. Katta, S. Pabboju, A. V. Babu and R. Akhila, CBIR using SIFT with LoG, DoG and PCA, Data Engineering and Communication Technology, (2020), 623–637. Google Scholar

[9]

X. Li, J. Luo, C. Duan and P. Yin, Portrait matching based on sift features, IOP Conference Series: Materials Science and Engineering, 612 (2019), 032162. doi: 10.1088/1757-899X/612/3/032162.  Google Scholar

[10]

X. Li, X. Wang and C. Cheng, Application of scene recognition technology based on faster and surf algorithm in augmented reality, International Conference on Smart and Sustainable City, (2017), 23. Google Scholar

[11]

L. Liberti and C. Lavor, Euclidean Distance Geometry: An introduction, Springer Undergraduate Texts in Mathematics and Technology, Springer, Cham, 2017. doi: 10.1007/978-3-319-60792-4.  Google Scholar

[12]

X. LiuX. Tao and N. Ge, Fast remote-sensing image registration using priori information and robust feature extraction, Tsinghua Science and Technology, 21 (2016), 552-560.   Google Scholar

[13]

Y. L. Liu, H. Zhang, H. L. Guo and N. N. Xiong, A FAST-BRISK feature detector with depth information, Sensors, 18 (2018), 3908. doi: 10.3390/s18113908.  Google Scholar

[14]

L. Tong and X. Ying, 3D point cloud initial registration using surface curvature and SURF matching, 3D Research, 9 (2018). doi: 10.1007/s13319-018-0193-8.  Google Scholar

[15]

C. Tsai and Y. Lin, An accelerated image matching technique for UAV orthoimage registration, ISPRS Journal of Photogrammetry and Remote Sensing, 128 (2017), 130-145.  doi: 10.1016/j.isprsjprs.2017.03.017.  Google Scholar

[16]

C. Y. WangZ. ZhangQ. W. Li and X. Zhou, An image copy-move forgery detection method based on SURF and PCET, Institute of Electrical and Electronics Engineers, 7 (2019), 170032-170047.  doi: 10.1109/ACCESS.2019.2955308.  Google Scholar

[17]

D. Xiang, B. Zhong and K. Ma, A location-aware scale-space method for salient object detection, International Conference on Image Processing, (2015), 4195–4199. doi: 10.1109/ICIP.2015.7351596.  Google Scholar

[18]

K. Yang, A. N. Pan, Y. Yang, S. Zhang, S. H. Ong and H. L. Tang, Remote sensing image registration using multiple image features, Remote Sensing, 9 (2017), 581. doi: 10.3390/rs9060581.  Google Scholar

[19]

D. Zeng, L. D. Wu, B. Y. Chen and W. Shen, Slope-restricted multi-scale feature matching for geostationary satellite remote sensing images, Remote Sensing, 9 (2017), 576. doi: 10.3390/rs9060576.  Google Scholar

[20]

L. Zhu, Y. Wang, B. Zhao and X. Z. Zhang, A fast image stitching algorithm based on improved SURF, International Conference on Computational Intelligence and Security, (2015), 171–175. doi: 10.1109/CIS.2014.67.  Google Scholar

Figure 1.  A region of intensities can be calculated in three additions on integral image
Figure 2.  Left to right: templates of Gaussian second order partial derivative $ L_{yy} $ and $ L_{xy} $ separately; Approximations of corresponding box filters $ D_{yy} $ and $ D_{xy} $ respectively
Figure 3.  Filters $ D_{yy} $ (above) and $ D_{xy} $ (below) with two size: $ 9\times 9 $ templates (left) and $ 15\times 15 $ templates (right)
Figure 4.  Filters and octaves permutation
Figure 5.  Scale space
Figure 6.  $ 3\times 3 \times 3 $ neighbourhood non-maximum suppression
Figure 7.  Haar wavelet templates in $ x $ and $ y $ directions
Figure 8.  A sliding sector to find out dominant orientation
Figure 9.  Descriptor and sub-region divisions
Figure 10.  Different local characteristics
Figure 11.  Flowchart of fast matching algorithm
Figure 12.  (b) and (d) is the UAV image A; (a) and (c) are the matched tiles with Image A via Ao' method and the proposed method respectively
Figure 13.  (b) and (d) is the UAV image B; (a) and (c) are the matched tiles with Image B via Ao' method and the proposed method respectively
Figure 14.  (b) and (d) is the UAV image C; (a) and (c) are the matched tiles with Image A via Ao' method and the proposed method respectively
Figure 15.  (b) and (d) is the UAV image D; (a) and (c) are the matched tiles with Image A via Ao' method and the proposed method respectively
Figure 16.  Diagram of the angle between $ \overline{AB} $ and Google map direction
Figure 17.  The matching results for Image B with rotations
Figure 18.  The matching results for Image C with rotations
Table 1.  Pseudo-code of fast matching algorithm
Algorithm: Fast matching algorithm for images with large scale disparity
Input: UAV aerial image $ I_{UAV} $, satellite tiles $ Tile_{i} $, $ i=1 $, 2, ..., n and $ C = 2 $.
Output: Best matching tile $ Tile_{b} $ with $ I_{scaled} $.
1: $ \alpha_{best} = \frac{D_{UAV}}{D_{Tile}} \times C $;
2: Reduce $ I_{UAV} $ with $ \alpha_{best} $ to get $ I_{scaled} $;
3: Let $ Value_{i} $ represent the corresponding matching performance between $ I_{scaled} $ and $ Tile_{b} $;
4: for $ i:=1 $ to $ n $ do
5: Double the size of $ Tile_{i} $;
6: Do the matching between the doubled $ Tile_{i} $ and $ I_{scaled} $;
7: Matching performance is valued by $ Value_{i} $
8: end for
9: $ b=argmax_{i} {Value_{i}} $ and $ Tile_{b} $ is the best matching tile with $ I_{scaled} $.
Stop.
Algorithm: Fast matching algorithm for images with large scale disparity
Input: UAV aerial image $ I_{UAV} $, satellite tiles $ Tile_{i} $, $ i=1 $, 2, ..., n and $ C = 2 $.
Output: Best matching tile $ Tile_{b} $ with $ I_{scaled} $.
1: $ \alpha_{best} = \frac{D_{UAV}}{D_{Tile}} \times C $;
2: Reduce $ I_{UAV} $ with $ \alpha_{best} $ to get $ I_{scaled} $;
3: Let $ Value_{i} $ represent the corresponding matching performance between $ I_{scaled} $ and $ Tile_{b} $;
4: for $ i:=1 $ to $ n $ do
5: Double the size of $ Tile_{i} $;
6: Do the matching between the doubled $ Tile_{i} $ and $ I_{scaled} $;
7: Matching performance is valued by $ Value_{i} $
8: end for
9: $ b=argmax_{i} {Value_{i}} $ and $ Tile_{b} $ is the best matching tile with $ I_{scaled} $.
Stop.
Table 2.  Comparisons on time-consuming and numbers of matched pairs
Image No. Matching time (second) Numbers of matched pairs
Image A using fast method 23.1 7
Image A using Ao's method 738.1 3
Image B using fast method 23.0 6
Image B using Ao's method 703.7 3
Image C using fast method 24.1 6
Image C using Ao's method 749.9 7
Image D using fast method 23.3 7
Image D using Ao's method 697.5 9
Image No. Matching time (second) Numbers of matched pairs
Image A using fast method 23.1 7
Image A using Ao's method 738.1 3
Image B using fast method 23.0 6
Image B using Ao's method 703.7 3
Image C using fast method 24.1 6
Image C using Ao's method 749.9 7
Image D using fast method 23.3 7
Image D using Ao's method 697.5 9
Table 3.  Comparisons of real scene direction with calculated scene rotation direction
Image No. Real image direction (degree) Calculated image direction (degree)
15 16.44
30 29.57
Image B 45 49.10
60 59.82
75 76.25
90 93.21
110 109.07
120 117.15
Image C 130 130.09
140 138.96
150 149.41
160 159.54
Image No. Real image direction (degree) Calculated image direction (degree)
15 16.44
30 29.57
Image B 45 49.10
60 59.82
75 76.25
90 93.21
110 109.07
120 117.15
Image C 130 130.09
140 138.96
150 149.41
160 159.54
[1]

Philippe Bonneton, Nicolas Bruneau, Bruno Castelle, Fabien Marche. Large-scale vorticity generation due to dissipating waves in the surf zone. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 729-738. doi: 10.3934/dcdsb.2010.13.729

[2]

Giuseppe Buttazzo, Serena Guarino Lo Bianco, Fabrizio Oliviero. Optimal location problems with routing cost. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1301-1317. doi: 10.3934/dcds.2014.34.1301

[3]

Danilo Coelho, David Pérez-Castrillo. On Marilda Sotomayor's extraordinary contribution to matching theory. Journal of Dynamics & Games, 2015, 2 (3&4) : 201-206. doi: 10.3934/jdg.2015001

[4]

Luigi Ambrosio, Federico Glaudo, Dario Trevisan. On the optimal map in the $ 2 $-dimensional random matching problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7291-7308. doi: 10.3934/dcds.2019304

[5]

J. M. Mazón, Julio D. Rossi, J. Toledo. Optimal matching problems with costs given by Finsler distances. Communications on Pure & Applied Analysis, 2015, 14 (1) : 229-244. doi: 10.3934/cpaa.2015.14.229

[6]

Paola B. Manasero. Equivalences between two matching models: Stability. Journal of Dynamics & Games, 2018, 5 (3) : 203-221. doi: 10.3934/jdg.2018013

[7]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[8]

Jean-Michel Morel, Guoshen Yu. Is SIFT scale invariant?. Inverse Problems & Imaging, 2011, 5 (1) : 115-136. doi: 10.3934/ipi.2011.5.115

[9]

Juan Campos, Rafael Ortega. Location of fixed points and periodic solutions in the plane. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 517-523. doi: 10.3934/dcdsb.2008.9.517

[10]

Guowei Hua, Shouyang Wang, Chi Kin Chan, S. H. Hou. A fractional programming model for international facility location. Journal of Industrial & Management Optimization, 2009, 5 (3) : 629-649. doi: 10.3934/jimo.2009.5.629

[11]

Maryam Esmaeili, Samane Sedehzade. Designing a hub location and pricing network in a competitive environment. Journal of Industrial & Management Optimization, 2020, 16 (2) : 653-667. doi: 10.3934/jimo.2018172

[12]

Dandan Hu, Zhi-Wei Liu. Location and capacity design of congested intermediate facilities in networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 449-470. doi: 10.3934/jimo.2016.12.449

[13]

Vesselin Petkov. Location of eigenvalues for the wave equation with dissipative boundary conditions. Inverse Problems & Imaging, 2016, 10 (4) : 1111-1139. doi: 10.3934/ipi.2016034

[14]

Chanh Kieu, Quan Wang. On the scale dynamics of the tropical cyclone intensity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3047-3070. doi: 10.3934/dcdsb.2017196

[15]

Julia Piantadosi, Phil Howlett, John Boland. Matching the grade correlation coefficient using a copula with maximum disorder. Journal of Industrial & Management Optimization, 2007, 3 (2) : 305-312. doi: 10.3934/jimo.2007.3.305

[16]

V. Carmona, E. Freire, E. Ponce, F. Torres. The continuous matching of two stable linear systems can be unstable. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 689-703. doi: 10.3934/dcds.2006.16.689

[17]

Angel Angelov, Marcus Wagner. Multimodal image registration by elastic matching of edge sketches via optimal control. Journal of Industrial & Management Optimization, 2014, 10 (2) : 567-590. doi: 10.3934/jimo.2014.10.567

[18]

Pengwen Chen, Changfeng Gui. Alpha divergences based mass transport models for image matching problems. Inverse Problems & Imaging, 2011, 5 (3) : 551-590. doi: 10.3934/ipi.2011.5.551

[19]

Sergei Avdonin, Pavel Kurasov, Marlena Nowaczyk. Inverse problems for quantum trees II: Recovering matching conditions for star graphs. Inverse Problems & Imaging, 2010, 4 (4) : 579-598. doi: 10.3934/ipi.2010.4.579

[20]

Jean Dolbeault, Giuseppe Toscani. Fast diffusion equations: Matching large time asymptotics by relative entropy methods. Kinetic & Related Models, 2011, 4 (3) : 701-716. doi: 10.3934/krm.2011.4.701

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]