\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On approximation to discrete q-derivatives of functions via q-Bernstein-Schurer operators

  • * Corresponding author: Harun Karsli

    * Corresponding author: Harun Karsli
Abstract Full Text(HTML) Related Papers Cited by
  • In the present paper, we shall investigate the pointwise approximation properties of the $ q- $analogue of the Bernstein-Schurer operators and estimate the rate of pointwise convergence of these operators to the functions $ f $ whose $ q- $derivatives are bounded variation on the interval $ [0,1+p]. $ We give an estimate for the rate of convergence of the operator $ \left( B_{n,p,q}f\right) $ at those points $ x $ at which the one sided $ q- $derivatives $D_{q}^{+}f(x) $ and $ D_{q}^{-}f(x) $ exist. We shall also prove that the operators $ \left( B_{n,p,q}f\right) (x) $ converge to the limit $ f(x) $. As a continuation of the very recent and initial study of the author deals with the pointwise approximation of the $ q- $Bernstein Durrmeyer operators [12] at those points $ x $ at which the one sided $ q- $derivatives $ D_{q}^{+}f(x) $ and $ D_{q}^{-}f(x) $ exist, this study provides (or presents) a forward work on the approximation of $ q $-analogue of the Schurer type operators in the space of $ D_{q}BV $.

    Mathematics Subject Classification: Primary: 41A25; Secondary: 41A35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] T. Acar and A. Aral, On pointwise convergence of q-Bernstein operators and their q-derivatives, Numer. Funct. Anal. Optim., 36 (2015), 287-304.  doi: 10.1080/01630563.2014.970646.
    [2] A.-M. AcuC. V. MuraruD. F. Sofonea and V. A. Radu, Some approximation properties of a Durrmeyer variant of q-Bernstein-Schurer operators, Math. Methods Appl. Sci., 39 (2016), 5636-5650.  doi: 10.1002/mma.3949.
    [3] A. Aral, V. Gupta and R. P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, 2013. doi: 10.1007/978-1-4614-6946-9.
    [4] R. Bojanić and F. Chêng, Rate of convergence of Bernstein polynomials for functions with derivatives of bounded variation, J. Math. Anal. Appl., 141 (1989), 136-151.  doi: 10.1016/0022-247X(89)90211-4.
    [5] R. Bojanić and F. Cheng, Rate of convergence of Hermite-Fejér polynomials for functions with derivatives of bounded variation, Acta Math. Hungar., 59 (1992), 91-102.  doi: 10.1007/BF00052094.
    [6] R. Bojanić and M. Vuilleumier, On the rate of convergence of Fourier-Legendre series of functions of bounded variation, J. Approx. Theory, 31 (1981), 67-79.  doi: 10.1016/0021-9045(81)90031-9.
    [7] F. H. Chêng, On the rate of convergence of Bernstein polynomials of functions of bounded variation, J. Approx. Theory, 39 (1983), 259-274.  doi: 10.1016/0021-9045(83)90098-9.
    [8] R. J. Finkelsteinq-uncertainty relations, Internat. J. Modern Phys. A., 13 (1998), 1795-1803.  doi: 10.1142/S0217751X98000780.
    [9] C.-L. Ho, On the use of Mellin transform to a class of q-difference-differential equations, Phys. Lett. A, 268 (2000), 217-223.  doi: 10.1016/S0375-9601(00)00191-2.
    [10] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203. 
    [11] V. Kac and P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4613-0071-7.
    [12] H. Karsli, Some approximation properties of q-Bernstein-Durrmeyer operators, Tbilisi Math. J., 12 (2019), 189-204.  doi: 10.32513/tbilisi/1578020576.
    [13] H. Karsli and V. Gupta, Some approximation properties of q-Chlodowsky operators, Appl. Math. Comput., 195 (2008), 220-229.  doi: 10.1016/j.amc.2007.04.085.
    [14] D. LeviJ. Negro and M. A. del Olmo, Discrete q-derivatives and symmetries of q-difference equations, J. Phys. A, 37 (2004), 3459-3473.  doi: 10.1088/0305-4470/37/10/010.
    [15] A. Lupaş, A q-analogue of the Bernstein operator, in Seminar on Numerical and Statistical Calculus, Univ. "Babeş-Bolyai", Cluj-Napoca, 1987, 85–92.
    [16] K. Mezlini and N. Bettaibi, Generalized discrete q-Hermite I polynomials and q-deformed oscillator, Acta Math. Sci. Ser. B (Engl. Ed.), 38 (2018), 1411-1426.  doi: 10.1016/S0252-9602(18)30822-1.
    [17] C.-V. Muraru, Note on q-Bernstein-Schurer operators, Stud. Univ. Babeş-Bolyai Math., 56 (2011), 489–495.
    [18] G. M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math., 4 (1997), 511-518. 
    [19] G. M. Phillips, On generalized Bernstein polynomials, in Numerical Analysis, World Sci. Publ., River Edge, NJ, 1996,263–269. doi: 10.1142/9789812812872_0018.
    [20] M.-Y. Ren and X.-M. Zeng, On statistical approximation properties of modified q-Bernstein-Schurer operators, Bull. Korean Math. Soc., 50 (2013), 1145-1156.  doi: 10.4134/BKMS.2013.50.4.1145.
    [21] J. Thomae, Beiträge zur Theorie der durch die Heinische Reihe: Darstellbaren Functionen, J. Reine Angew. Math., 70 (1869), 258-281.  doi: 10.1515/crll.1869.70.258.
  • 加载中
SHARE

Article Metrics

HTML views(1320) PDF downloads(280) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return