-
Previous Article
Semi-Supervised classification of hyperspectral images using discrete nonlocal variation Potts Model
- MFC Home
- This Issue
- Next Article
Iyengar-Hilfer fractional inequalities
Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA |
Here we present Iyengar type integral inequalities. At the univariate level they involve $ \psi $-Hilfer left and right fractional derivatives. At the multivariate level they involve Hilfer left and right fractional derivatives, and they deal with radial and non-radial functions on the ball and spherical shell. All estimates are with respect to norms $ \left \Vert \cdot \right \Vert _{p} $, $ 1\leq p\leq \infty $. At the end we provide an application.
References:
[1] |
R. Almeida,
A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460-481.
doi: 10.1016/j.cnsns.2016.09.006. |
[2] |
S. S. Dragomir,
Inequalities for the Riemann-Stieljes integral of $\left( p,q\right) -H-$dominated integrators with applications, Appl. Math. E-Notes, 15 (2015), 243-260.
|
[3] |
K. S. K. Iyengar, Note on an inequality, Math. Stud., 6 (1938), 75-76. Google Scholar |
[4] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differentiation Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. |
[5] |
W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York-Toronto, Ont. -London, 1966. |
[6] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993. |
[7] |
D. W. Stroock, A Concise Introduction to the Theory of Integration, Birkhaüser Boston, Inc, Boston, MA, 1999. |
[8] |
Ž. Tomovski, R. Hilfer and H. M. Srivastava,
Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms Spec Funct., 21 (2010), 797-814.
doi: 10.1080/10652461003675737. |
[9] |
J. Vanterler da C. Sousa and E. Capelas de Oliveira,
On the $\psi $-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72-91.
doi: 10.1016/j.cnsns.2018.01.005. |
show all references
References:
[1] |
R. Almeida,
A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460-481.
doi: 10.1016/j.cnsns.2016.09.006. |
[2] |
S. S. Dragomir,
Inequalities for the Riemann-Stieljes integral of $\left( p,q\right) -H-$dominated integrators with applications, Appl. Math. E-Notes, 15 (2015), 243-260.
|
[3] |
K. S. K. Iyengar, Note on an inequality, Math. Stud., 6 (1938), 75-76. Google Scholar |
[4] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differentiation Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. |
[5] |
W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York-Toronto, Ont. -London, 1966. |
[6] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993. |
[7] |
D. W. Stroock, A Concise Introduction to the Theory of Integration, Birkhaüser Boston, Inc, Boston, MA, 1999. |
[8] |
Ž. Tomovski, R. Hilfer and H. M. Srivastava,
Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms Spec Funct., 21 (2010), 797-814.
doi: 10.1080/10652461003675737. |
[9] |
J. Vanterler da C. Sousa and E. Capelas de Oliveira,
On the $\psi $-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72-91.
doi: 10.1016/j.cnsns.2018.01.005. |
[1] |
Pallavi Bedi, Anoop Kumar, Thabet Abdeljawad, Aziz Khan. S-asymptotically $ \omega $-periodic mild solutions and stability analysis of Hilfer fractional evolution equations. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020089 |
[2] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002 |
[3] |
Ekta Mittal, Sunil Joshi. Note on a $ k $-generalised fractional derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 797-804. doi: 10.3934/dcdss.2020045 |
[4] |
Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 709-722. doi: 10.3934/dcdss.2020039 |
[5] |
Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 911-923. doi: 10.3934/dcdss.2020053 |
[6] |
Saïd Abbas, Mouffak Benchohra, John R. Graef. Coupled systems of Hilfer fractional differential inclusions in banach spaces. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2479-2493. doi: 10.3934/cpaa.2018118 |
[7] |
Fahd Jarad, Thabet Abdeljawad. Variational principles in the frame of certain generalized fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 695-708. doi: 10.3934/dcdss.2020038 |
[8] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[9] |
Phuong Le. Symmetry of singular solutions for a weighted Choquard equation involving the fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (1) : 527-539. doi: 10.3934/cpaa.2020026 |
[10] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293 |
[11] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[12] |
Alessio Fiscella. Schrödinger–Kirchhoff–Hardy $ p $–fractional equations without the Ambrosetti–Rabinowitz condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (7) : 1993-2007. doi: 10.3934/dcdss.2020154 |
[13] |
Elhoussine Azroul, Abdelmoujib Benkirane, and Mohammed Shimi. On a nonlocal problem involving the fractional $ p(x,.) $-Laplacian satisfying Cerami condition. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020425 |
[14] |
Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001 |
[15] |
Yong Zhou, Jia Wei He. New results on controllability of fractional evolution systems with order $ \alpha\in (1,2) $. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020077 |
[16] |
Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 723-739. doi: 10.3934/dcdss.2020040 |
[17] |
Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091 |
[18] |
Lun Guo, Wentao Huang, Huifang Jia. Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $ \mathbb{R} ^{3} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1663-1693. doi: 10.3934/cpaa.2019079 |
[19] |
Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021093 |
[20] |
Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020376 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]