May  2021, 4(2): 105-115. doi: 10.3934/mfc.2021006

New explicit and exact traveling wave solutions of (3+1)-dimensional KP equation

1. 

School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong, 273165, China

2. 

College of Information Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China

* Corresponding author: Jie Xin

Received  August 2020 Revised  March 2021 Published  April 2021

Fund Project: The second author is supported by the Natural Science Foundation of Shandong Province (No. ZR2018BA016) and the third author is supported by the National Natural Science Foundation of China (No. 11371183)

In this paper, we investigate explicit exact traveling wave solutions of the generalized (3+1)-dimensional KP equation
$ \begin{equation} \ (u_{t}+\alpha uu_{x}+\beta u_{xxx})_{x}+\gamma u_{yy}+\delta u_{zz} = 0, \ \ \ \ \beta>0 \;\;\;\;\;\;(1) \ \end{equation}$
describing the dynamics of solitons and nonlinear waves in the field of plasma physics and fluid dynamics, where
$ \alpha, \beta, \gamma, \delta $
are nonzero constants. By using the simplified homogeneous balance method, we get one single soliton solution and one double soliton solution of (1). Moreover, we use the extended tanh method with a Riccati equation and the simplest equation method with Bernoulli equation to obtain seven sets of explicit exact traveling wave solutions. When
$ \delta = 0 $
or
$ \gamma = 0 $
, (1) reduces to (2+1)-dimensional KP equation. Therefore, we can get some exact traveling wave solutions of (2+1)-dimensional KP equation.
Citation: Yuanqing Xu, Xiaoxiao Zheng, Jie Xin. New explicit and exact traveling wave solutions of (3+1)-dimensional KP equation. Mathematical Foundations of Computing, 2021, 4 (2) : 105-115. doi: 10.3934/mfc.2021006
References:
[1]

T. AlagesanA. Uthayakumar and K. Porsezian, Painlevé analysis and Bäcklund transformation for a three-dimensional Kadomtsev-Petviashvili equation, Chaos Solitons Fractals, 8 (1997), 893-895.  doi: 10.1016/S0960-0779(96)00166-X.  Google Scholar

[2]

H. Chen and H. Zhang, New multiple soliton-like solutions to the generalized $(2+1)$-dimensional KP equation, Appl. Math. Comput., 157 (2004), 765-773.  doi: 10.1016/j.amc.2003.08.072.  Google Scholar

[3]

L. ChengY. ZhangZ.-S. Tong and J.-Y. Ge, Rational and complexion solutions of the $(3+1)$-dimensional KP equation, Nonlinear Dynam., 72 (2013), 605-613.  doi: 10.1007/s11071-012-0738-y.  Google Scholar

[4]

S. M. El-Sayed and D. Kaya, The decomposition method for solving (2 + 1)-dimensional Boussinesq equation and (3+1)-dimensional KP equation, Appl. Math. Comput., 157 (2004), 523-534. Google Scholar

[5]

X. HaoY. LiuZ. Li and W.-X. Ma, Painlevé analysis, soliton solutions and lump-type solutions of the $(3+1)$-dimensional generalized KP equation, Comput. Math. Appl., 77 (2019), 724-730.  doi: 10.1016/j.camwa.2018.10.007.  Google Scholar

[6]

L. He and Z. Zhao, Multiple lump solutions and dynamics of the generalized $(3+1)$-dimensional KP equation, Modern Phys. Lett. B, 34 (2020), 20pp. doi: 10.1142/S0217984920501675.  Google Scholar

[7]

A. H. KhaterO. H. El-Kalaawy and M. A. Helal, Two new classes of exact solutions for the KdV equation via Bäcklund transformations, Chaos Solitons Fractals, 8 (1997), 1901-1909.  doi: 10.1016/S0960-0779(97)00090-8.  Google Scholar

[8]

W.-X. MaA. Abdeljabbar and M. G. Asaad, Wronskian and Grammian solutions to a $(3+1)$-dimensional generalized KP equation, Appl. Math. Comput., 217 (2011), 10016-10023.  doi: 10.1016/j.amc.2011.04.077.  Google Scholar

[9]

W.-X. Ma and Z. Zhu, Solving the $(3+1)$-dimensional generalized KP and BKP equations by the multiple exp-function algorithm, Appl. Math. Comput., 218 (2012), 11871-11879.  doi: 10.1016/j.amc.2012.05.049.  Google Scholar

[10]

M. WangX. Li and J. Zhang, Two-soliton solution to a generalized KP equation with general variable coefficients, Appl. Math. Lett., 76 (2018), 21-27.  doi: 10.1016/j.aml.2017.07.011.  Google Scholar

[11]

M. WangJ. Zhang and X. Li, Decay mode solutions to cylindrical KP equation, Appl. Math. Lett., 62 (2016), 29-34.  doi: 10.1016/j.aml.2016.06.012.  Google Scholar

[12]

A.-M. Wazwaz, Multiple-soliton solutions for a $(3+1)$-dimensional generalized KP equation, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 491-495.  doi: 10.1016/j.cnsns.2011.05.025.  Google Scholar

[13]

A.-M. Wazwaz, Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method, Appl. Math. Comput., 190 (2007), 633-640.  doi: 10.1016/j.amc.2007.01.056.  Google Scholar

[14]

Z. Yan, Multiple solution profiles to the higher-dimensional Kadomtsev-Petviashvilli equations via Wronskian determinant, Chaos Solitons Fractals, 33 (2007), 951-957.  doi: 10.1016/j.chaos.2006.01.122.  Google Scholar

[15]

L. YangK. Yang and H. Luo, Complex version KdV equation and the periods solution, Phys. Lett. A, 267 (2000), 331-334.  doi: 10.1016/S0375-9601(00)00128-6.  Google Scholar

[16]

H.-Y. Zhang and Y.-F. Zhang, Analysis on the $M$-rogue wave solutions of a generalized $(3+1)$-dimensional KP equation, Appl. Math. Lett., 102 (2020), 9pp. doi: 10.1016/j.aml.2019.106145.  Google Scholar

show all references

References:
[1]

T. AlagesanA. Uthayakumar and K. Porsezian, Painlevé analysis and Bäcklund transformation for a three-dimensional Kadomtsev-Petviashvili equation, Chaos Solitons Fractals, 8 (1997), 893-895.  doi: 10.1016/S0960-0779(96)00166-X.  Google Scholar

[2]

H. Chen and H. Zhang, New multiple soliton-like solutions to the generalized $(2+1)$-dimensional KP equation, Appl. Math. Comput., 157 (2004), 765-773.  doi: 10.1016/j.amc.2003.08.072.  Google Scholar

[3]

L. ChengY. ZhangZ.-S. Tong and J.-Y. Ge, Rational and complexion solutions of the $(3+1)$-dimensional KP equation, Nonlinear Dynam., 72 (2013), 605-613.  doi: 10.1007/s11071-012-0738-y.  Google Scholar

[4]

S. M. El-Sayed and D. Kaya, The decomposition method for solving (2 + 1)-dimensional Boussinesq equation and (3+1)-dimensional KP equation, Appl. Math. Comput., 157 (2004), 523-534. Google Scholar

[5]

X. HaoY. LiuZ. Li and W.-X. Ma, Painlevé analysis, soliton solutions and lump-type solutions of the $(3+1)$-dimensional generalized KP equation, Comput. Math. Appl., 77 (2019), 724-730.  doi: 10.1016/j.camwa.2018.10.007.  Google Scholar

[6]

L. He and Z. Zhao, Multiple lump solutions and dynamics of the generalized $(3+1)$-dimensional KP equation, Modern Phys. Lett. B, 34 (2020), 20pp. doi: 10.1142/S0217984920501675.  Google Scholar

[7]

A. H. KhaterO. H. El-Kalaawy and M. A. Helal, Two new classes of exact solutions for the KdV equation via Bäcklund transformations, Chaos Solitons Fractals, 8 (1997), 1901-1909.  doi: 10.1016/S0960-0779(97)00090-8.  Google Scholar

[8]

W.-X. MaA. Abdeljabbar and M. G. Asaad, Wronskian and Grammian solutions to a $(3+1)$-dimensional generalized KP equation, Appl. Math. Comput., 217 (2011), 10016-10023.  doi: 10.1016/j.amc.2011.04.077.  Google Scholar

[9]

W.-X. Ma and Z. Zhu, Solving the $(3+1)$-dimensional generalized KP and BKP equations by the multiple exp-function algorithm, Appl. Math. Comput., 218 (2012), 11871-11879.  doi: 10.1016/j.amc.2012.05.049.  Google Scholar

[10]

M. WangX. Li and J. Zhang, Two-soliton solution to a generalized KP equation with general variable coefficients, Appl. Math. Lett., 76 (2018), 21-27.  doi: 10.1016/j.aml.2017.07.011.  Google Scholar

[11]

M. WangJ. Zhang and X. Li, Decay mode solutions to cylindrical KP equation, Appl. Math. Lett., 62 (2016), 29-34.  doi: 10.1016/j.aml.2016.06.012.  Google Scholar

[12]

A.-M. Wazwaz, Multiple-soliton solutions for a $(3+1)$-dimensional generalized KP equation, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 491-495.  doi: 10.1016/j.cnsns.2011.05.025.  Google Scholar

[13]

A.-M. Wazwaz, Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method, Appl. Math. Comput., 190 (2007), 633-640.  doi: 10.1016/j.amc.2007.01.056.  Google Scholar

[14]

Z. Yan, Multiple solution profiles to the higher-dimensional Kadomtsev-Petviashvilli equations via Wronskian determinant, Chaos Solitons Fractals, 33 (2007), 951-957.  doi: 10.1016/j.chaos.2006.01.122.  Google Scholar

[15]

L. YangK. Yang and H. Luo, Complex version KdV equation and the periods solution, Phys. Lett. A, 267 (2000), 331-334.  doi: 10.1016/S0375-9601(00)00128-6.  Google Scholar

[16]

H.-Y. Zhang and Y.-F. Zhang, Analysis on the $M$-rogue wave solutions of a generalized $(3+1)$-dimensional KP equation, Appl. Math. Lett., 102 (2020), 9pp. doi: 10.1016/j.aml.2019.106145.  Google Scholar

Figure 1.  $ \alpha = 6,\beta = 1,\gamma = \delta = 3 $
Figure 2.  $ \alpha = -6,\beta = 1,\gamma = \delta = 3 $
Figure 3.  $ \alpha = 6,\beta = \lambda = \mu = B = 1,\gamma = \delta = 3,c = y = z = 0 $
Figure 4.  $ \alpha = -6,\beta = \lambda = \mu = B = 1,\gamma = \delta = 3,c = y = z = 0 $
Figure 5.  $ u_{11} $ as $ \alpha = -6,\beta = 1,\gamma = 3 $, $ \delta = 3 $, $ \lambda = \mu = 1,k = 2 $, $ y = z = 0 $
Figure 6.  $ u_{12} $ as $ \alpha = -6,\beta = 1,\gamma = 3,\delta = 3 $, $ \lambda = \mu = 1,k = 2 $, $ y = z = 0 $
Figure 7.  $ u_{2} $ as $ \alpha = 6,\beta = 1,\gamma = 3,\delta = 3 $, $ k = 6,\lambda = \mu = 1, y = z = 0 $
Figure 8.  $ u_{2} $ as $ \alpha = -6,\beta = 1,\gamma = 3,\delta = 3 $, $ k = 6,\lambda = \mu = 1, y = z = 0 $
Figure 9.  $ u_{31} $ as $ \alpha = -6,\beta = 1,\gamma = 3,\delta = 3 $, $ \lambda = \mu = 1,k = 2, y = z = 0 $
Figure 10.  $ u_{32} $ as $ \alpha = -6,\beta = 1,\gamma = 3,\delta = 3 $, $ \lambda = \mu = 1,k = 2, y = z = 0 $
Figure 11.  $ \alpha = 6,\beta = d = 1,\gamma = 3,\delta = 3 $, $ \lambda = \mu = 1, k = 3, y = z = 0 $
Figure 12.  $ \alpha = -6 $, $ \beta = d = 1,\gamma = 3,\delta = 3 $, $ \lambda = \mu = 1, k = 3, y = z = 0 $
[1]

Chaudry Masood Khalique, Letlhogonolo Daddy Moleleki. A study of a generalized first extended (3+1)-dimensional Jimbo-Miwa equation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2789-2802. doi: 10.3934/dcdss.2020169

[2]

Hartmut Pecher. Infinite energy solutions for the (3+1)-dimensional Yang-Mills equation in Lorenz gauge. Communications on Pure & Applied Analysis, 2019, 18 (2) : 663-688. doi: 10.3934/cpaa.2019033

[3]

Weipeng Hu, Zichen Deng, Yuyue Qin. Multi-symplectic method to simulate Soliton resonance of (2+1)-dimensional Boussinesq equation. Journal of Geometric Mechanics, 2013, 5 (3) : 295-318. doi: 10.3934/jgm.2013.5.295

[4]

Muhammad Arfan, Kamal Shah, Aman Ullah, Soheil Salahshour, Ali Ahmadian, Massimiliano Ferrara. A novel semi-analytical method for solutions of two dimensional fuzzy fractional wave equation using natural transform. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021011

[5]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[6]

Jagadeesh R. Sonnad, Chetan T. Goudar. Solution of the Michaelis-Menten equation using the decomposition method. Mathematical Biosciences & Engineering, 2009, 6 (1) : 173-188. doi: 10.3934/mbe.2009.6.173

[7]

Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159

[8]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[9]

Ali Hamidoǧlu. On general form of the Tanh method and its application to nonlinear partial differential equations. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 175-181. doi: 10.3934/naco.2016007

[10]

Sergei Avdonin, Yuanyuan Zhao. Leaf Peeling method for the wave equation on metric tree graphs. Inverse Problems & Imaging, 2021, 15 (2) : 185-199. doi: 10.3934/ipi.2020060

[11]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[12]

Berat Karaagac. New exact solutions for some fractional order differential equations via improved sub-equation method. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 447-454. doi: 10.3934/dcdss.2019029

[13]

Lijun Zhang, Peiying Yuan, Jingli Fu, Chaudry Masood Khalique. Bifurcations and exact traveling wave solutions of the Zakharov-Rubenchik equation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2927-2939. doi: 10.3934/dcdss.2020214

[14]

Panagiotis Stinis. A hybrid method for the inviscid Burgers equation. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 793-799. doi: 10.3934/dcds.2003.9.793

[15]

Weiran Sun, Min Tang. A relaxation method for one dimensional traveling waves of singular and nonlocal equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1459-1491. doi: 10.3934/dcdsb.2013.18.1459

[16]

Aleksa Srdanov, Radiša Stefanović, Aleksandra Janković, Dragan Milovanović. "Reducing the number of dimensions of the possible solution space" as a method for finding the exact solution of a system with a large number of unknowns. Mathematical Foundations of Computing, 2019, 2 (2) : 83-93. doi: 10.3934/mfc.2019007

[17]

Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465

[18]

Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems & Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033

[19]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[20]

Andrei Fursikov. Stabilization of the simplest normal parabolic equation. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1815-1854. doi: 10.3934/cpaa.2014.13.1815

 Impact Factor: 

Metrics

  • PDF downloads (15)
  • HTML views (88)
  • Cited by (0)

Other articles
by authors

[Back to Top]