
-
Previous Article
Global attractors of the 3D micropolar equations with damping term
- MFC Home
- This Issue
-
Next Article
Hermite-Hadamard type inequalities for harmonical $ (h1,h2)- $convex interval-valued functions
New explicit and exact traveling wave solutions of (3+1)-dimensional KP equation
1. | School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong, 273165, China |
2. | College of Information Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China |
$ \begin{equation} \ (u_{t}+\alpha uu_{x}+\beta u_{xxx})_{x}+\gamma u_{yy}+\delta u_{zz} = 0, \ \ \ \ \beta>0 \;\;\;\;\;\;(1) \ \end{equation}$ |
$ \alpha, \beta, \gamma, \delta $ |
$ \delta = 0 $ |
$ \gamma = 0 $ |
References:
[1] |
T. Alagesan, A. Uthayakumar and K. Porsezian,
Painlevé analysis and Bäcklund transformation for a three-dimensional Kadomtsev-Petviashvili equation, Chaos Solitons Fractals, 8 (1997), 893-895.
doi: 10.1016/S0960-0779(96)00166-X. |
[2] |
H. Chen and H. Zhang,
New multiple soliton-like solutions to the generalized $(2+1)$-dimensional KP equation, Appl. Math. Comput., 157 (2004), 765-773.
doi: 10.1016/j.amc.2003.08.072. |
[3] |
L. Cheng, Y. Zhang, Z.-S. Tong and J.-Y. Ge,
Rational and complexion solutions of the $(3+1)$-dimensional KP equation, Nonlinear Dynam., 72 (2013), 605-613.
doi: 10.1007/s11071-012-0738-y. |
[4] |
S. M. El-Sayed and D. Kaya, The decomposition method for solving (2 + 1)-dimensional Boussinesq equation and (3+1)-dimensional KP equation, Appl. Math. Comput., 157 (2004), 523-534. |
[5] |
X. Hao, Y. Liu, Z. Li and W.-X. Ma,
Painlevé analysis, soliton solutions and lump-type solutions of the $(3+1)$-dimensional generalized KP equation, Comput. Math. Appl., 77 (2019), 724-730.
doi: 10.1016/j.camwa.2018.10.007. |
[6] |
L. He and Z. Zhao, Multiple lump solutions and dynamics of the generalized $(3+1)$-dimensional KP equation, Modern Phys. Lett. B, 34 (2020), 20pp.
doi: 10.1142/S0217984920501675. |
[7] |
A. H. Khater, O. H. El-Kalaawy and M. A. Helal,
Two new classes of exact solutions for the KdV equation via Bäcklund transformations, Chaos Solitons Fractals, 8 (1997), 1901-1909.
doi: 10.1016/S0960-0779(97)00090-8. |
[8] |
W.-X. Ma, A. Abdeljabbar and M. G. Asaad,
Wronskian and Grammian solutions to a $(3+1)$-dimensional generalized KP equation, Appl. Math. Comput., 217 (2011), 10016-10023.
doi: 10.1016/j.amc.2011.04.077. |
[9] |
W.-X. Ma and Z. Zhu,
Solving the $(3+1)$-dimensional generalized KP and BKP equations by the multiple exp-function algorithm, Appl. Math. Comput., 218 (2012), 11871-11879.
doi: 10.1016/j.amc.2012.05.049. |
[10] |
M. Wang, X. Li and J. Zhang,
Two-soliton solution to a generalized KP equation with general variable coefficients, Appl. Math. Lett., 76 (2018), 21-27.
doi: 10.1016/j.aml.2017.07.011. |
[11] |
M. Wang, J. Zhang and X. Li,
Decay mode solutions to cylindrical KP equation, Appl. Math. Lett., 62 (2016), 29-34.
doi: 10.1016/j.aml.2016.06.012. |
[12] |
A.-M. Wazwaz,
Multiple-soliton solutions for a $(3+1)$-dimensional generalized KP equation, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 491-495.
doi: 10.1016/j.cnsns.2011.05.025. |
[13] |
A.-M. Wazwaz,
Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method, Appl. Math. Comput., 190 (2007), 633-640.
doi: 10.1016/j.amc.2007.01.056. |
[14] |
Z. Yan,
Multiple solution profiles to the higher-dimensional Kadomtsev-Petviashvilli equations via Wronskian determinant, Chaos Solitons Fractals, 33 (2007), 951-957.
doi: 10.1016/j.chaos.2006.01.122. |
[15] |
L. Yang, K. Yang and H. Luo,
Complex version KdV equation and the periods solution, Phys. Lett. A, 267 (2000), 331-334.
doi: 10.1016/S0375-9601(00)00128-6. |
[16] |
H.-Y. Zhang and Y.-F. Zhang, Analysis on the $M$-rogue wave solutions of a generalized $(3+1)$-dimensional KP equation, Appl. Math. Lett., 102 (2020), 9pp.
doi: 10.1016/j.aml.2019.106145. |
show all references
References:
[1] |
T. Alagesan, A. Uthayakumar and K. Porsezian,
Painlevé analysis and Bäcklund transformation for a three-dimensional Kadomtsev-Petviashvili equation, Chaos Solitons Fractals, 8 (1997), 893-895.
doi: 10.1016/S0960-0779(96)00166-X. |
[2] |
H. Chen and H. Zhang,
New multiple soliton-like solutions to the generalized $(2+1)$-dimensional KP equation, Appl. Math. Comput., 157 (2004), 765-773.
doi: 10.1016/j.amc.2003.08.072. |
[3] |
L. Cheng, Y. Zhang, Z.-S. Tong and J.-Y. Ge,
Rational and complexion solutions of the $(3+1)$-dimensional KP equation, Nonlinear Dynam., 72 (2013), 605-613.
doi: 10.1007/s11071-012-0738-y. |
[4] |
S. M. El-Sayed and D. Kaya, The decomposition method for solving (2 + 1)-dimensional Boussinesq equation and (3+1)-dimensional KP equation, Appl. Math. Comput., 157 (2004), 523-534. |
[5] |
X. Hao, Y. Liu, Z. Li and W.-X. Ma,
Painlevé analysis, soliton solutions and lump-type solutions of the $(3+1)$-dimensional generalized KP equation, Comput. Math. Appl., 77 (2019), 724-730.
doi: 10.1016/j.camwa.2018.10.007. |
[6] |
L. He and Z. Zhao, Multiple lump solutions and dynamics of the generalized $(3+1)$-dimensional KP equation, Modern Phys. Lett. B, 34 (2020), 20pp.
doi: 10.1142/S0217984920501675. |
[7] |
A. H. Khater, O. H. El-Kalaawy and M. A. Helal,
Two new classes of exact solutions for the KdV equation via Bäcklund transformations, Chaos Solitons Fractals, 8 (1997), 1901-1909.
doi: 10.1016/S0960-0779(97)00090-8. |
[8] |
W.-X. Ma, A. Abdeljabbar and M. G. Asaad,
Wronskian and Grammian solutions to a $(3+1)$-dimensional generalized KP equation, Appl. Math. Comput., 217 (2011), 10016-10023.
doi: 10.1016/j.amc.2011.04.077. |
[9] |
W.-X. Ma and Z. Zhu,
Solving the $(3+1)$-dimensional generalized KP and BKP equations by the multiple exp-function algorithm, Appl. Math. Comput., 218 (2012), 11871-11879.
doi: 10.1016/j.amc.2012.05.049. |
[10] |
M. Wang, X. Li and J. Zhang,
Two-soliton solution to a generalized KP equation with general variable coefficients, Appl. Math. Lett., 76 (2018), 21-27.
doi: 10.1016/j.aml.2017.07.011. |
[11] |
M. Wang, J. Zhang and X. Li,
Decay mode solutions to cylindrical KP equation, Appl. Math. Lett., 62 (2016), 29-34.
doi: 10.1016/j.aml.2016.06.012. |
[12] |
A.-M. Wazwaz,
Multiple-soliton solutions for a $(3+1)$-dimensional generalized KP equation, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 491-495.
doi: 10.1016/j.cnsns.2011.05.025. |
[13] |
A.-M. Wazwaz,
Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method, Appl. Math. Comput., 190 (2007), 633-640.
doi: 10.1016/j.amc.2007.01.056. |
[14] |
Z. Yan,
Multiple solution profiles to the higher-dimensional Kadomtsev-Petviashvilli equations via Wronskian determinant, Chaos Solitons Fractals, 33 (2007), 951-957.
doi: 10.1016/j.chaos.2006.01.122. |
[15] |
L. Yang, K. Yang and H. Luo,
Complex version KdV equation and the periods solution, Phys. Lett. A, 267 (2000), 331-334.
doi: 10.1016/S0375-9601(00)00128-6. |
[16] |
H.-Y. Zhang and Y.-F. Zhang, Analysis on the $M$-rogue wave solutions of a generalized $(3+1)$-dimensional KP equation, Appl. Math. Lett., 102 (2020), 9pp.
doi: 10.1016/j.aml.2019.106145. |












[1] |
Chaudry Masood Khalique, Letlhogonolo Daddy Moleleki. A study of a generalized first extended (3+1)-dimensional Jimbo-Miwa equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2789-2802. doi: 10.3934/dcdss.2020169 |
[2] |
Hartmut Pecher. Infinite energy solutions for the (3+1)-dimensional Yang-Mills equation in Lorenz gauge. Communications on Pure and Applied Analysis, 2019, 18 (2) : 663-688. doi: 10.3934/cpaa.2019033 |
[3] |
Weipeng Hu, Zichen Deng, Yuyue Qin. Multi-symplectic method to simulate Soliton resonance of (2+1)-dimensional Boussinesq equation. Journal of Geometric Mechanics, 2013, 5 (3) : 295-318. doi: 10.3934/jgm.2013.5.295 |
[4] |
Muhammad Arfan, Kamal Shah, Aman Ullah, Soheil Salahshour, Ali Ahmadian, Massimiliano Ferrara. A novel semi-analytical method for solutions of two dimensional fuzzy fractional wave equation using natural transform. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 315-338. doi: 10.3934/dcdss.2021011 |
[5] |
S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604 |
[6] |
Jagadeesh R. Sonnad, Chetan T. Goudar. Solution of the Michaelis-Menten equation using the decomposition method. Mathematical Biosciences & Engineering, 2009, 6 (1) : 173-188. doi: 10.3934/mbe.2009.6.173 |
[7] |
Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159 |
[8] |
Ali Hamidoǧlu. On general form of the Tanh method and its application to nonlinear partial differential equations. Numerical Algebra, Control and Optimization, 2016, 6 (2) : 175-181. doi: 10.3934/naco.2016007 |
[9] |
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019 |
[10] |
Sergei Avdonin, Yuanyuan Zhao. Leaf Peeling method for the wave equation on metric tree graphs. Inverse Problems and Imaging, 2021, 15 (2) : 185-199. doi: 10.3934/ipi.2020060 |
[11] |
Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141 |
[12] |
Lijun Zhang, Peiying Yuan, Jingli Fu, Chaudry Masood Khalique. Bifurcations and exact traveling wave solutions of the Zakharov-Rubenchik equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2927-2939. doi: 10.3934/dcdss.2020214 |
[13] |
Berat Karaagac. New exact solutions for some fractional order differential equations via improved sub-equation method. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 447-454. doi: 10.3934/dcdss.2019029 |
[14] |
Panagiotis Stinis. A hybrid method for the inviscid Burgers equation. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 793-799. doi: 10.3934/dcds.2003.9.793 |
[15] |
Weiran Sun, Min Tang. A relaxation method for one dimensional traveling waves of singular and nonlocal equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1459-1491. doi: 10.3934/dcdsb.2013.18.1459 |
[16] |
Aleksa Srdanov, Radiša Stefanović, Aleksandra Janković, Dragan Milovanović. "Reducing the number of dimensions of the possible solution space" as a method for finding the exact solution of a system with a large number of unknowns. Mathematical Foundations of Computing, 2019, 2 (2) : 83-93. doi: 10.3934/mfc.2019007 |
[17] |
Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks and Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465 |
[18] |
Andrei Fursikov. Stabilization of the simplest normal parabolic equation. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1815-1854. doi: 10.3934/cpaa.2014.13.1815 |
[19] |
Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185 |
[20] |
Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems and Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]