[1]
|
H. Akaike, Stochastic theory of minimal realization. System identification and time-series analysis, IEEE Trans. Automatic Control, AC-19 (1974), 667-674.
doi: 10.1109/tac.1974.1100707.
|
[2]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Now Foundations and Trends, 2011.
doi: 10.1561/2200000016.
|
[3]
|
C. Chen, B. He, Y. Ye and X. Yuan, The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, Math. Program., 155 (2016), 57-79.
doi: 10.1007/s10107-014-0826-5.
|
[4]
|
L. Chen, D. Sun and K.-C. Toh, An efficient inexact symmetric Gauss-Sediel based majorized ADMM for high-dimensonal convex composite conic programming, Math. Program., 161 (2017), 237-270.
doi: 10.1007/s10107-016-1007-5.
|
[5]
|
Z. Chen, S. X. Ding, T. Peng, C. Yang and W. Gui, Fault detection for non-Gaussian processes using generalized canonical correlation analysis and randomized algorithms, IEEE Trans. Industrial Electron., 65 (2018), 1559-1567.
doi: 10.1109/TIE.2017.2733501.
|
[6]
|
Z. Chen, S. X. Ding, K. Zhang, Z. Li and Z. Hu, Canonical correlation analysis-based fault detection methods with application to alumina evaporation process, Control Engrg. Pract., 46 (2016), 51-58.
doi: 10.1016/j.conengprac.2015.10.006.
|
[7]
|
Z. Chen, K. Zhang, S. X. Ding, Y. A. W. Shardt and Z. Hu, Improved canonical correlation analysis-based fault detection methods for industrial processes, J. Process Contr., 41 (2016), 26-34.
doi: 10.1016/j.jprocont.2016.02.006.
|
[8]
|
L. H. Chiang, E. L. Russell and R. D. Braatz, Fault Detection and Diagnosis in Industrial Systems, Advanced Textbooks in Control and Signal Processing, Springer-Verlag, London, 2001.
doi: 10.1007/978-1-4471-0347-9.
|
[9]
|
S. X. Ding, Data-Driven Design of Fault Diagnosis and Fault-Tolerant Control Systems, Advances in Industrial Control, Springer-Verlag, London, 2014.
doi: 10.1007/978-1-4471-6410-4.
|
[10]
|
S. X. Ding, Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools, Springer Science & Business Media, 2008.
|
[11]
|
J. J. Downs and E. F. Vogel, A plant-wide industrial process control problem, Comput. Chem. Engrg., 17 (1993), 245-255.
doi: 10.1016/0098-1354(93)80018-I.
|
[12]
|
Z. Gao, C. Cecati and S. X. Ding, A survey of fault diagnosis and fault-tolerant techniques-Part I: Fault diagnosis with model-based and signal-based approaches, IEEE Trans. Industrial Electron., 62 (2015), 3757-3767.
doi: 10.1109/TIE.2015.2417501.
|
[13]
|
S. M. Gross and R. Tibshirani, Collaborative regression, Biostatistics, 16 (2015), 326-338.
doi: 10.1093/biostatistics/kxu047.
|
[14]
|
H. Hotelling, Relations between two sets of variates, Biometrika, 28 (1936), 321-377.
doi: 10.1093/biomet/28.3-4.321.
|
[15]
|
W. Hu, B. Cai, A. Zhang, V. D. Calhoun and Y.-P. Wang, Deep collaborative learning with application to the study of multimodal brain development, IEEE Trans. Biomed. Engrg., 66 (2019), 3346-3359.
doi: 10.1109/TBME.2019.2904301.
|
[16]
|
Q. Jiang, S. X. Ding, Y. Wang and X. Yan, Data-driven distributed local fault detection for large-scale processes based on the GA-regularized canonical correlation analysis, IEEE Trans. Industrial Electron., 64 (2017), 8148-8157.
doi: 10.1109/TIE.2017.2698422.
|
[17]
|
Q. Jiang and X. Yan, Multimode process monitoring using variational Bayesian inference and canonical correlation analysis, IEEE Trans. Automat. Sci. Engrg., 16 (2019), 1814-1824.
doi: 10.1109/TASE.2019.2897477.
|
[18]
|
J. Liu, S. Ji and J. Ye, Multi-task feature learning via efficient $\ell_{2, 1}$-norm minimization, preprint, arXiv: 1205.2631.
|
[19]
|
R. Liu, Y. Yang, L. Li and S. X. Ding, Key performance indicators based fault detection and isolation using data-driven approaches, IEEE Trans. Circuits-II, 68 (2021), 291-295.
doi: 10.1109/TCSII.2020.2993306.
|
[20]
|
Y. Liu, B. Liu, X. Zhao and M. Xie, A mixture of variational canonical correlation analysis for nonlinear and quality-relevant process monitoring, IEEE Trans. Industrial Electron., 65 (2018), 6478-6486.
doi: 10.1109/TIE.2017.2786253.
|
[21]
|
Y. Liu, J. Zeng, L. Xie, S. Luo and H. Su, Structured joint sparse principal component analysis for fault detection and isolation, IEEE Trans. Ind. Inform., 15 (2019), 2721-2731.
doi: 10.1109/TII.2018.2868364.
|
[22]
|
K. Peng, K. Zhang, B. You, J. Dong and Z. Wang, A quality-based nonlinear fault diagnosis framework focusing on industrial multimode batch processes, IEEE Trans. Industrial Electron., 63 (2016), 2615-2624.
doi: 10.1109/TIE.2016.2520906.
|
[23]
|
Y. Si, Y. Wang and D. Zhou, Key-performance-indicator-related process monitoring based on improved kernel partial least squares, IEEE Trans. Industrial Electron., 68 (2021), 2626-2636.
doi: 10.1109/TIE.2020.2972472.
|
[24]
|
Y. Tao, H. Shi, B. Song and S. Tan, A novel dynamic weight principal component analysis method and hierarchical monitoring strategy for process fault detection and diagnosis, IEEE Trans. Industrial Electron., 67 (2020), 7994-8004.
doi: 10.1109/TIE.2019.2942560.
|
[25]
|
X. Xiu, Y. Yang, L. Kong and W. Liu, Data-driven process monitoring using structured joint sparse canonical correlation analysis, IEEE Trans. Circuits-II, 68 (2021), 361-365.
doi: 10.1109/TCSII.2020.2988054.
|
[26]
|
X. Xiu, Y. Yang, L. Kong and W. Liu, Laplacian regularized robust principal component analysis for process monitoring, J. Process Contr., 92 (2020), 212-219.
doi: 10.1016/j.jprocont.2020.06.011.
|
[27]
|
X. Xiu, Y. Yang, W. Liu, L. Kong and M. Shang, An improved total variation regularized RPCA for moving object detection with dynamic background, J. Ind. Manag. Optim., 16 (2020), 1685-1698.
doi: 10.3934/jimo.2019024.
|
[28]
|
Y. Yang, S. X. Ding and L. Li, Parameterization of nonlinear observer-based fault detection systems, IEEE Trans. Automat. Control, 61 (2016), 3687-3692.
doi: 10.1109/TAC.2016.2532381.
|
[29]
|
S. Yin, S. X. Ding, A. Haghani, H. Hao and P. Zhang, A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process, J. Process Contr., 22 (2012), 1567-1581.
doi: 10.1016/j.jprocont.2012.06.009.
|
[30]
|
R. Y. Zhong, X. Xu, E. Klotz and S. T. Newman, Intelligent manufacturing in the context of industry 4.0: A review, Engineering, 3 (2017), 616-630.
doi: 10.1016/J.ENG.2017.05.015.
|