• Previous Article
    Uniform attractors of stochastic three-component Gray-Scott system with multiplicative noise
  • MFC Home
  • This Issue
  • Next Article
    A novel scheme for multivariate statistical fault detection with application to the Tennessee Eastman process
August  2021, 4(3): 185-191. doi: 10.3934/mfc.2021011

Asymptotic normality of associated Lah numbers

1. 

Shandong Yutai No.1 Middle School, Yutai 272300, China

2. 

School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China

* Corresponding author: Lily Li Liu

Received  September 2019 Revised  June 2021 Published  August 2021 Early access  August 2021

Fund Project: This work was supported partially by the National Natural Science Foundation of China (No. 11871304) and the Natural Science Foundation of Shandong Province of China (No. ZR2017MA025)

Based on the results given by Ahuja and Enneking, we show that the generating function of the associated Lah numbers having only real zeros, and further obtain the asymptotic normality of the associated Lah numbers. As application, we get the asymptotic normality of the signless Lah numbers.

Citation: Wen Zhang, Lily Li Liu. Asymptotic normality of associated Lah numbers. Mathematical Foundations of Computing, 2021, 4 (3) : 185-191. doi: 10.3934/mfc.2021011
References:
[1]

J. C. Ahuja, Distributions of the Sum of Independent Decapitated Negative Binomial Variables, Ann. Math. Statist., 42 (1971), 383-384.  doi: 10.1214/aoms/1177693527.  Google Scholar

[2]

J. C. Ahuja and E. A. Enneking, Concavity property and a recurrence relation for associated Lah nubers, Fibonacci Quart., 17 (1979), 158-161.   Google Scholar

[3]

P. Baldi and Y. Rinott, Asymptotic normality of some graph-related statistics, J. Appl. Probab., 26 (1989), 171-175.  doi: 10.2307/3214327.  Google Scholar

[4]

P. Barry, Some observations on the Lah and Laguerre transforms of integer sequences, J. Integer Seq., 10 (2007), 18pp.  Google Scholar

[5]

H. Belbachir and I. E. Bousbaa, Associated Lah numbers and $r$-Stirling numbers, Mathematics, (2014). Google Scholar

[6]

E. A. Bender, Central and local limit theorems applied to asymptotic enumeration, J. Combin. Theory Ser. A, 15 (1973), 91-111.  doi: 10.1016/0097-3165(73)90038-1.  Google Scholar

[7]

E. R. Canfield, Asymptotic normality in enumeration, Handbook of enumerative combinatories, Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, FL, (2015), 255–280.  Google Scholar

[8]

C. A. Charalambides, Enumerative Combinatoric, CRC Press Series on Discrete Mathematics and its Applications, Chapman and Hall/CRC, Boca Raton, FL, 2002.  Google Scholar

[9]

L. Comtet, Adanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974.  Google Scholar

[10]

D. Galvin, Asymptotic normality of some graph sequences, Graphs Combin., 32 (2016), 639-647.  doi: 10.1007/s00373-015-1596-4.  Google Scholar

[11]

C. D. Godsil, Matching behavior is asymptotically normal, Combinatorica, 1 (1981), 369-376.   Google Scholar

[12]

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics-A Foundation for Computer Science, 2$^{nd}$ editio, Addison-Wesley Publishing Company, Reading, MA, 1994.  Google Scholar

[13]

L. H. Harper, Stirling behavior is asymptotically normal, Ann. Math. Stattist., 38 (1967), 410-414.  doi: 10.1214/aoms/1177698956.  Google Scholar

[14]

J. Kahn, A normal law for matchings, Combinatorica, 20 (2000), 339-391.  doi: 10.1007/PL00009835.  Google Scholar

[15]

J. L. LebowitzB. PittelD. Ruelle and E. R. Speer, Central limit theorems, Lee-Yang zeros, and graph-counting polynomials, J. Combin. Theory Ser. A, 141 (2016), 147-183.  doi: 10.1016/j.jcta.2016.02.009.  Google Scholar

[16]

J. LindsayT. Mansour and M. Shattuck, A new combinatorial interpretation of a $q$-analogue of the Lah numbers, J. Comb., 2 (2011), 245-264.  doi: 10.4310/JOC.2011.v2.n2.a4.  Google Scholar

[17]

L. L. Liu and Y. Wang, A unified approach to polynomial sequences with only real zeros, Adv. in Apple. Math., 38 (2007), 542-560.  doi: 10.1016/j.aam.2006.02.003.  Google Scholar

[18]

T. S. Motzkin, Sorting numbers for cylinders other classification numbers, Proc. Symp. Pure Math, 19 (1971), 167-176.   Google Scholar

[19]

S. B. Nandi and S. K. Dutta, On associated and generalized Lah numbers and applications to discrete distributions, Fibonacci Quart., 25 (1987), 128-136.   Google Scholar

[20]

K. Nowick, Asymptotic normality of graph statistics, J. Statist. Plann. Inference, 21 (1989), 209-222.  doi: 10.1016/0378-3758(89)90005-0.  Google Scholar

[21]

M. Petkov$\check{s}$ek and T. Pisanski, Combinatorial interpretation of unsigned Stirling and Lah numbers, preprint, Univ. of Ljubljana.(Available on the Internet), 40 (2002). Google Scholar

[22]

A. Ruciński, The behaviour of $\frac{\binom{n}{k, ...k, n-ik}}{i!}$ is asymptotically normal, Discrete Math., 49 (1984), 287-290.  doi: 10.1016/0012-365X(84)90165-1.  Google Scholar

[23]

C. Wagner, Generalized Stirling and Lah numbers, Discrete Math., 160 (1996), 199-218.  doi: 10.1016/0012-365X(95)00112-A.  Google Scholar

[24]

Y. WangH.-X. Zhang and B.-X. Zhu, Asymptotic normality of Laplacian coefficients of graphs, J. Math. Anal. Appl., 455 (2017), 2030-2037.  doi: 10.1016/j.jmaa.2017.06.052.  Google Scholar

show all references

References:
[1]

J. C. Ahuja, Distributions of the Sum of Independent Decapitated Negative Binomial Variables, Ann. Math. Statist., 42 (1971), 383-384.  doi: 10.1214/aoms/1177693527.  Google Scholar

[2]

J. C. Ahuja and E. A. Enneking, Concavity property and a recurrence relation for associated Lah nubers, Fibonacci Quart., 17 (1979), 158-161.   Google Scholar

[3]

P. Baldi and Y. Rinott, Asymptotic normality of some graph-related statistics, J. Appl. Probab., 26 (1989), 171-175.  doi: 10.2307/3214327.  Google Scholar

[4]

P. Barry, Some observations on the Lah and Laguerre transforms of integer sequences, J. Integer Seq., 10 (2007), 18pp.  Google Scholar

[5]

H. Belbachir and I. E. Bousbaa, Associated Lah numbers and $r$-Stirling numbers, Mathematics, (2014). Google Scholar

[6]

E. A. Bender, Central and local limit theorems applied to asymptotic enumeration, J. Combin. Theory Ser. A, 15 (1973), 91-111.  doi: 10.1016/0097-3165(73)90038-1.  Google Scholar

[7]

E. R. Canfield, Asymptotic normality in enumeration, Handbook of enumerative combinatories, Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, FL, (2015), 255–280.  Google Scholar

[8]

C. A. Charalambides, Enumerative Combinatoric, CRC Press Series on Discrete Mathematics and its Applications, Chapman and Hall/CRC, Boca Raton, FL, 2002.  Google Scholar

[9]

L. Comtet, Adanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974.  Google Scholar

[10]

D. Galvin, Asymptotic normality of some graph sequences, Graphs Combin., 32 (2016), 639-647.  doi: 10.1007/s00373-015-1596-4.  Google Scholar

[11]

C. D. Godsil, Matching behavior is asymptotically normal, Combinatorica, 1 (1981), 369-376.   Google Scholar

[12]

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics-A Foundation for Computer Science, 2$^{nd}$ editio, Addison-Wesley Publishing Company, Reading, MA, 1994.  Google Scholar

[13]

L. H. Harper, Stirling behavior is asymptotically normal, Ann. Math. Stattist., 38 (1967), 410-414.  doi: 10.1214/aoms/1177698956.  Google Scholar

[14]

J. Kahn, A normal law for matchings, Combinatorica, 20 (2000), 339-391.  doi: 10.1007/PL00009835.  Google Scholar

[15]

J. L. LebowitzB. PittelD. Ruelle and E. R. Speer, Central limit theorems, Lee-Yang zeros, and graph-counting polynomials, J. Combin. Theory Ser. A, 141 (2016), 147-183.  doi: 10.1016/j.jcta.2016.02.009.  Google Scholar

[16]

J. LindsayT. Mansour and M. Shattuck, A new combinatorial interpretation of a $q$-analogue of the Lah numbers, J. Comb., 2 (2011), 245-264.  doi: 10.4310/JOC.2011.v2.n2.a4.  Google Scholar

[17]

L. L. Liu and Y. Wang, A unified approach to polynomial sequences with only real zeros, Adv. in Apple. Math., 38 (2007), 542-560.  doi: 10.1016/j.aam.2006.02.003.  Google Scholar

[18]

T. S. Motzkin, Sorting numbers for cylinders other classification numbers, Proc. Symp. Pure Math, 19 (1971), 167-176.   Google Scholar

[19]

S. B. Nandi and S. K. Dutta, On associated and generalized Lah numbers and applications to discrete distributions, Fibonacci Quart., 25 (1987), 128-136.   Google Scholar

[20]

K. Nowick, Asymptotic normality of graph statistics, J. Statist. Plann. Inference, 21 (1989), 209-222.  doi: 10.1016/0378-3758(89)90005-0.  Google Scholar

[21]

M. Petkov$\check{s}$ek and T. Pisanski, Combinatorial interpretation of unsigned Stirling and Lah numbers, preprint, Univ. of Ljubljana.(Available on the Internet), 40 (2002). Google Scholar

[22]

A. Ruciński, The behaviour of $\frac{\binom{n}{k, ...k, n-ik}}{i!}$ is asymptotically normal, Discrete Math., 49 (1984), 287-290.  doi: 10.1016/0012-365X(84)90165-1.  Google Scholar

[23]

C. Wagner, Generalized Stirling and Lah numbers, Discrete Math., 160 (1996), 199-218.  doi: 10.1016/0012-365X(95)00112-A.  Google Scholar

[24]

Y. WangH.-X. Zhang and B.-X. Zhu, Asymptotic normality of Laplacian coefficients of graphs, J. Math. Anal. Appl., 455 (2017), 2030-2037.  doi: 10.1016/j.jmaa.2017.06.052.  Google Scholar

[1]

Bao Qing Hu, Song Wang. A novel approach in uncertain programming part I: new arithmetic and order relation for interval numbers. Journal of Industrial & Management Optimization, 2006, 2 (4) : 351-371. doi: 10.3934/jimo.2006.2.351

[2]

Karla L. Cortez, Javier F. Rosenblueth. Normality and uniqueness of Lagrange multipliers. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 3169-3188. doi: 10.3934/dcds.2018138

[3]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[4]

Rejeb Hadiji, Ken Shirakawa. 3D-2D asymptotic observation for minimization problems associated with degenerate energy-coefficients. Conference Publications, 2011, 2011 (Special) : 624-633. doi: 10.3934/proc.2011.2011.624

[5]

Ken Shirakawa. Asymptotic stability for dynamical systems associated with the one-dimensional Frémond model of shape memory alloys. Conference Publications, 2003, 2003 (Special) : 798-808. doi: 10.3934/proc.2003.2003.798

[6]

Kengo Matsumoto. $ C^* $-algebras associated with asymptotic equivalence relations defined by hyperbolic toral automorphisms. Electronic Research Archive, 2021, 29 (4) : 2645-2656. doi: 10.3934/era.2021006

[7]

Chihurn Kim, Dong Han Kim. On the law of logarithm of the recurrence time. Discrete & Continuous Dynamical Systems, 2004, 10 (3) : 581-587. doi: 10.3934/dcds.2004.10.581

[8]

Petr Kůrka, Vincent Penné, Sandro Vaienti. Dynamically defined recurrence dimension. Discrete & Continuous Dynamical Systems, 2002, 8 (1) : 137-146. doi: 10.3934/dcds.2002.8.137

[9]

Serge Troubetzkoy. Recurrence in generic staircases. Discrete & Continuous Dynamical Systems, 2012, 32 (3) : 1047-1053. doi: 10.3934/dcds.2012.32.1047

[10]

Michael Blank. Recurrence for measurable semigroup actions. Discrete & Continuous Dynamical Systems, 2021, 41 (4) : 1649-1665. doi: 10.3934/dcds.2020335

[11]

Michel Benaim, Morris W. Hirsch. Chain recurrence in surface flows. Discrete & Continuous Dynamical Systems, 1995, 1 (1) : 1-16. doi: 10.3934/dcds.1995.1.1

[12]

Uta Renata Freiberg. Einstein relation on fractal objects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 509-525. doi: 10.3934/dcdsb.2012.17.509

[13]

Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1

[14]

Milton Ko. Rényi entropy and recurrence. Discrete & Continuous Dynamical Systems, 2013, 33 (6) : 2403-2421. doi: 10.3934/dcds.2013.33.2403

[15]

Miguel Abadi, Sandro Vaienti. Large deviations for short recurrence. Discrete & Continuous Dynamical Systems, 2008, 21 (3) : 729-747. doi: 10.3934/dcds.2008.21.729

[16]

David Bechara Senior, Umberto L. Hryniewicz, Pedro A. S. Salomão. On the relation between action and linking. Journal of Modern Dynamics, 2021, 17: 319-336. doi: 10.3934/jmd.2021011

[17]

Peng Sun. Exponential decay of Lebesgue numbers. Discrete & Continuous Dynamical Systems, 2012, 32 (10) : 3773-3785. doi: 10.3934/dcds.2012.32.3773

[18]

Danny Calegari, Alden Walker. Ziggurats and rotation numbers. Journal of Modern Dynamics, 2011, 5 (4) : 711-746. doi: 10.3934/jmd.2011.5.711

[19]

Xavier Buff, Nataliya Goncharuk. Complex rotation numbers. Journal of Modern Dynamics, 2015, 9: 169-190. doi: 10.3934/jmd.2015.9.169

[20]

Jie Li, Kesong Yan, Xiangdong Ye. Recurrence properties and disjointness on the induced spaces. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 1059-1073. doi: 10.3934/dcds.2015.35.1059

 Impact Factor: 

Metrics

  • PDF downloads (38)
  • HTML views (73)
  • Cited by (0)

Other articles
by authors

[Back to Top]