August  2021, 4(3): 209-219. doi: 10.3934/mfc.2021013

Solving fuzzy volterra-fredholm integral equation by fuzzy artificial neural network

1. 

Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran

2. 

Department of Mathematics, Faculty of Basic Science, West Tehran Branch, Islamic Azad University, Tehran, Iran

* Corresponding author

Received  March 2021 Revised  June 2021 Published  August 2021 Early access  August 2021

The volterra-fredholm integral equation in all forms are arose from physics, biology and engineering problems which is derived from differential equation modelling. On the other hand, the trained programming algorithm by the fuzzy artificial neural networks has effective solution to find the best answer. In this article we try to estimate the equation and its answer by developed fuzzy artificial neural network to fuzzy volterra-fredholme integral. Our attempts would lead to benchmark other extended forms of this type of equation.

Citation: Seiyed Hadi Abtahi, Hamidreza Rahimi, Maryam Mosleh. Solving fuzzy volterra-fredholm integral equation by fuzzy artificial neural network. Mathematical Foundations of Computing, 2021, 4 (3) : 209-219. doi: 10.3934/mfc.2021013
References:
[1]

G. Adomian, Solution of physical problems by decomposition, Comput. Math. Appl., 27 (1994), 145-154.  doi: 10.1016/0898-1221(94)90132-5.

[2]

M. Y. Ali, A. Sultana and A. Khan, Comparison of fuzzy multiplication operation on triangular fuzzy number, IOSR J. Math (IOSR-JM), 12, (2016), 35–41.

[3]

A. B. Badiru and J. Cheung, Fuzzy Engineering Expert Systems with Neural Network Applications, Vol. 11, John Wiley & Sons, 2002.

[4]

E. Balagurusamy, Computer Oriented Statistical and Numerical Methods, Macmillan India Limited, 1988.

[5]

C. Bector and S. Chandra, Fuzzy numbers and fuzzy arithmetic, Fuzzy Mathematical Programming and Fuzzy Matrix Game, (2005), 39–56.

[6]

S. S. Behzadi, Solving fuzzy nonlinear Volterra-Fredholm integral equations by using homotopy analysis and Adomiandecomposition methods, J. Fuzzy Set Valued Anal., 2011 (2011), 1-13. 

[7]

H. Brunner, On the numerical solution of nonlinear Volterra-Fredholm integral equations by collocation methods, SIAM J. Numer. Anal., 27 (1990), 987-1000.  doi: 10.1137/0727057.

[8]

A. E. Bryson and Y. C. Ho, Applied Optimal Control: Optimization, Estimation, and Control, Hemisphere Publishing Corp. Washington, D. C.; Distributed by Halsted Press [John Wiley & Sons], New York-London-Sydney, 1975.

[9]

J. J. Buckley and Y. Hayashi, Can fuzzy neural nets approximate continuous fuzzy functions?, Fuzzy Sets and Systems, 61 (1994), 43-51.  doi: 10.1016/0165-0114(94)90283-6.

[10]

A. CardoneE. Messina and A. Vecchio, An adaptive method for Volterra-Fredholm integral equations on the half line, J. Comput. Appl. Math., 228 (2009), 538-547.  doi: 10.1016/j.cam.2008.03.036.

[11]

J. DijkmanH. V. Haeringen and S. D. Lange, Fuzzy numbers, Journal of Mathematical Analysis and Applications, 92 (1983), 301-341.  doi: 10.1016/0022-247X(83)90253-6.

[12] D. DumitrescuB. Lazzerini and L. C. Jain, Fuzzy Sets & their Application to Clustering & Training, CRC Press, 2000. 
[13]

R. Fullér, Introduction to Neuro-Fuzzy Systems, Advances in Soft Computing, Physica-Verlag, Heidelberg, 2000. doi: 10.1007/978-3-7908-1852-9.

[14]

I. Gohberg, S. Goldberg and M. A. Kaashoek, Classes of Linear Operator, Vol. 63, Birkhäuser, 2013. doi: 10.1007/978-3-0348-8558-4_1.

[15] K. Gurney, An Introduction to Neural Networks, CRC Press, 2014. 
[16]

Y. HayashiJ. J. Buckley and E. Czogala, Fuzzy neural network with fuzzy signals and weights, International Journal of Intelligent Systems, 8 (1993), 527-537. 

[17]

D. O. Hebb and D. Hebb, The Organization of Behavior, Vol. 65, Wiley New York, 1949.

[18]

R. Hecht-Nielsen, Kolmogorov's mapping neural network existence theorem, IEEE Press, 3 (1987), 11-14. 

[19]

J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci. U. S. A., 79 (1982), 2554-2558. doi: 10.1073/pnas.79.8.2554.

[20]

H. IshibuchiK. Morioka and I. Turksen, Learning by fuzzified neural networks, International Journal of Approximate Reasoning, 13 (1995), 327-358.  doi: 10.1016/0888-613X(95)00060-T.

[21]

H. Ishibuchi, H. Tanaka and H. Okada., Fuzzy neural networks with fuzzy weights and fuzzy biases, IEEE International Conference on Neural Networks, (1993), 1650–1655. doi: 10.1109/ICNN.1993.298804.

[22]

O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301-317.  doi: 10.1016/0165-0114(87)90029-7.

[23]

J. M. Keller and D. J. Hunt, Incorporating fuzzy membership functions into the perceptron algorithm, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6 (1985), 693-699.  doi: 10.1109/TPAMI.1985.4767725.

[24]

E. Khan and P. Venkatapuram, Neufuz: Neural network based fuzzy logic design algorithms, Second IEEE International Conference on Fuzzy Systems, (1993), 647–654, https://ieeexplore.ieee.org/abstract/document/327412.

[25]

D. Kriesel, A Brief Introduction on Neural Network, 2007. Available from: http://www.dkriesel.com/en/science.

[26]

A. R. Krommer and C. W. Ueberhuber, Computational Integration, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. doi: 10.1137/1.9781611971460.

[27]

C. T. Leondes, Fuzzy Logic and Expert Systems Applications, Vol. 6, Elsevier, 1998.

[28]

T. Mach, Eigenvalue Algorithms for Symmetric Hierarchical Matrices, Thomas Mach, 2012.

[29]

A. Malek and R. S. Beidokhti, Numerical solution for high order differential equations using a hybrid neural network-optimization method, Appl. Math. Comput., 183 (2006), 260-271.  doi: 10.1016/j.amc.2006.05.068.

[30]

K. Maleknejard and M. Hadizadeh, A new computational method for Volterra-Fredholm integral equations, Comput. Math. Appl., 37 (1999), 1-8.  doi: 10.1016/S0898-1221(99)00107-8.

[31]

J. McCarthy, Programs with Common Sense, RLE and MIT Computation Center, 1960.

[32]

W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5 (1943), 115-133.  doi: 10.1007/BF02478259.

[33] K. MehrotraC. K. Mohan and S. Ranka, Elements of Artificial Neural Networks, MIT Press, 1997.  doi: 10.7551/mitpress/2687.001.0001.
[34]

P. Milner, A brief history of the hebbian learning rule, Canadian Psychology/Psychologie Canadienne, 44 (2003), 5-9.  doi: 10.1037/h0085817.

[35]

F. Mirzaee and A. A. Hoseini, Numerical solution of nonlinear Volterra-Fredholm integral equations using hybrid of block-pulse functions and Taylor series, Alexandria Engineering Journal, 52 (2013), 551-555.  doi: 10.1016/j.aej.2013.02.004.

[36]

J. Moor, The dartmouth college artificial intelligence conference: The next fifty years, Ai Magazine, 27 (2006), 87-87. 

[37]

F. Mora-Camino and C. A. N. Cosenza, Fuzzy dual numbers, in fuzzy dual numbers, Springer, (2018), 11–16.

[38]

M. Mosleh, Fuzzy neural network for solving a system of fuzzy differential equations, Applied Soft Computing, 13 (2013), 3597-3607.  doi: 10.1016/j.asoc.2013.04.013.

[39]

M. A. Nielsen, Neural Networks and Deep Learning, Vol. 25, Determination Press, 2015.

[40]

B. Pachpatte, On mixed Volterra-Fredholm type integral equations, Indian J. Pure Appl. Math., 17 (1986), 488-496. 

[41]

J. Y. Park and J. U. Jeong, On the existence and uniqueness of solutions of fuzzy Volterra-Fredholm integral equations, Fuzzy Sets and Systems, 115 (2000), 425-431.  doi: 10.1016/S0165-0114(98)00341-8.

[42]

W. Pedrycz, Fuzzy Modelling: Paradigms and Practice, Vol. 7, Springer Science & Business Media, 2012. doi: 10.1007/978-1-4613-1365-6.

[43] T. A. Polk and C. M. Seifert, Cognitive Modeling, MIT Press, 2002. 
[44]

V. Raju and R. Jayagopal, An arithmetic operations of icosagonal fuzzy number using Alpha cut, International Journal of Pure and Applied Mathematics, 120 (2018), 137-145. 

[45]

A. L. Samuel, Some studies in machine learning using the game of checkers, IBM J. Res. Develop., 3 (1959), 211-229.  doi: 10.1147/rd.33.0210.

[46]

S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24 (1987), 319-330.  doi: 10.1016/0165-0114(87)90030-3.

[47]

P. SibiS. A. Jones and P. Siddarth, Analysis of different activation functions using back propagation neural networks, Journal of Theoretical and Applied Information Technology, 47 (2013), 1264-1268. 

[48]

R. Subramanian, Emergent AI, Social Robots and the Law: Security, Privacy and Policy Issues, Journal of International, Technology and Information Management, 26 (2017).

[49]

E. A. Wan, Time Series Prediction by using a Connectionist Network with Internal Delay Lines, Addison-Wesley Publishing Co, 1993.

[50] P. P. Wang and S. K. Chang, Fuzzy Sets: Theory and Applications to Policy Analysis and Information Systems, Plenum Press, New York-London, 1980. 
[51]

A.-M. Wazwaz, A First Course in Integral Equations, 2$^{nd}$ edition, World Scientific Publishing Company, Co. Pte. Ltd., Hackensack, NJ, 2015.

[52]

P. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph. D. dissertation, Harvard University, 1975.

[53]

J. Yuan and S. Yu, Privacy preserving back-propagation neural network learning made practical with cloud computing, IEEE Transactions on Parallel and Distributed Systems, 25 (2013), 212-221. 

[54]

L. A. Zadeh and F. sets, Fuzzy sets, Information and Control, 8 (1965), 338-353.  doi: 10.1016/S0019-9958(65)90241-X.

show all references

References:
[1]

G. Adomian, Solution of physical problems by decomposition, Comput. Math. Appl., 27 (1994), 145-154.  doi: 10.1016/0898-1221(94)90132-5.

[2]

M. Y. Ali, A. Sultana and A. Khan, Comparison of fuzzy multiplication operation on triangular fuzzy number, IOSR J. Math (IOSR-JM), 12, (2016), 35–41.

[3]

A. B. Badiru and J. Cheung, Fuzzy Engineering Expert Systems with Neural Network Applications, Vol. 11, John Wiley & Sons, 2002.

[4]

E. Balagurusamy, Computer Oriented Statistical and Numerical Methods, Macmillan India Limited, 1988.

[5]

C. Bector and S. Chandra, Fuzzy numbers and fuzzy arithmetic, Fuzzy Mathematical Programming and Fuzzy Matrix Game, (2005), 39–56.

[6]

S. S. Behzadi, Solving fuzzy nonlinear Volterra-Fredholm integral equations by using homotopy analysis and Adomiandecomposition methods, J. Fuzzy Set Valued Anal., 2011 (2011), 1-13. 

[7]

H. Brunner, On the numerical solution of nonlinear Volterra-Fredholm integral equations by collocation methods, SIAM J. Numer. Anal., 27 (1990), 987-1000.  doi: 10.1137/0727057.

[8]

A. E. Bryson and Y. C. Ho, Applied Optimal Control: Optimization, Estimation, and Control, Hemisphere Publishing Corp. Washington, D. C.; Distributed by Halsted Press [John Wiley & Sons], New York-London-Sydney, 1975.

[9]

J. J. Buckley and Y. Hayashi, Can fuzzy neural nets approximate continuous fuzzy functions?, Fuzzy Sets and Systems, 61 (1994), 43-51.  doi: 10.1016/0165-0114(94)90283-6.

[10]

A. CardoneE. Messina and A. Vecchio, An adaptive method for Volterra-Fredholm integral equations on the half line, J. Comput. Appl. Math., 228 (2009), 538-547.  doi: 10.1016/j.cam.2008.03.036.

[11]

J. DijkmanH. V. Haeringen and S. D. Lange, Fuzzy numbers, Journal of Mathematical Analysis and Applications, 92 (1983), 301-341.  doi: 10.1016/0022-247X(83)90253-6.

[12] D. DumitrescuB. Lazzerini and L. C. Jain, Fuzzy Sets & their Application to Clustering & Training, CRC Press, 2000. 
[13]

R. Fullér, Introduction to Neuro-Fuzzy Systems, Advances in Soft Computing, Physica-Verlag, Heidelberg, 2000. doi: 10.1007/978-3-7908-1852-9.

[14]

I. Gohberg, S. Goldberg and M. A. Kaashoek, Classes of Linear Operator, Vol. 63, Birkhäuser, 2013. doi: 10.1007/978-3-0348-8558-4_1.

[15] K. Gurney, An Introduction to Neural Networks, CRC Press, 2014. 
[16]

Y. HayashiJ. J. Buckley and E. Czogala, Fuzzy neural network with fuzzy signals and weights, International Journal of Intelligent Systems, 8 (1993), 527-537. 

[17]

D. O. Hebb and D. Hebb, The Organization of Behavior, Vol. 65, Wiley New York, 1949.

[18]

R. Hecht-Nielsen, Kolmogorov's mapping neural network existence theorem, IEEE Press, 3 (1987), 11-14. 

[19]

J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci. U. S. A., 79 (1982), 2554-2558. doi: 10.1073/pnas.79.8.2554.

[20]

H. IshibuchiK. Morioka and I. Turksen, Learning by fuzzified neural networks, International Journal of Approximate Reasoning, 13 (1995), 327-358.  doi: 10.1016/0888-613X(95)00060-T.

[21]

H. Ishibuchi, H. Tanaka and H. Okada., Fuzzy neural networks with fuzzy weights and fuzzy biases, IEEE International Conference on Neural Networks, (1993), 1650–1655. doi: 10.1109/ICNN.1993.298804.

[22]

O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301-317.  doi: 10.1016/0165-0114(87)90029-7.

[23]

J. M. Keller and D. J. Hunt, Incorporating fuzzy membership functions into the perceptron algorithm, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6 (1985), 693-699.  doi: 10.1109/TPAMI.1985.4767725.

[24]

E. Khan and P. Venkatapuram, Neufuz: Neural network based fuzzy logic design algorithms, Second IEEE International Conference on Fuzzy Systems, (1993), 647–654, https://ieeexplore.ieee.org/abstract/document/327412.

[25]

D. Kriesel, A Brief Introduction on Neural Network, 2007. Available from: http://www.dkriesel.com/en/science.

[26]

A. R. Krommer and C. W. Ueberhuber, Computational Integration, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. doi: 10.1137/1.9781611971460.

[27]

C. T. Leondes, Fuzzy Logic and Expert Systems Applications, Vol. 6, Elsevier, 1998.

[28]

T. Mach, Eigenvalue Algorithms for Symmetric Hierarchical Matrices, Thomas Mach, 2012.

[29]

A. Malek and R. S. Beidokhti, Numerical solution for high order differential equations using a hybrid neural network-optimization method, Appl. Math. Comput., 183 (2006), 260-271.  doi: 10.1016/j.amc.2006.05.068.

[30]

K. Maleknejard and M. Hadizadeh, A new computational method for Volterra-Fredholm integral equations, Comput. Math. Appl., 37 (1999), 1-8.  doi: 10.1016/S0898-1221(99)00107-8.

[31]

J. McCarthy, Programs with Common Sense, RLE and MIT Computation Center, 1960.

[32]

W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5 (1943), 115-133.  doi: 10.1007/BF02478259.

[33] K. MehrotraC. K. Mohan and S. Ranka, Elements of Artificial Neural Networks, MIT Press, 1997.  doi: 10.7551/mitpress/2687.001.0001.
[34]

P. Milner, A brief history of the hebbian learning rule, Canadian Psychology/Psychologie Canadienne, 44 (2003), 5-9.  doi: 10.1037/h0085817.

[35]

F. Mirzaee and A. A. Hoseini, Numerical solution of nonlinear Volterra-Fredholm integral equations using hybrid of block-pulse functions and Taylor series, Alexandria Engineering Journal, 52 (2013), 551-555.  doi: 10.1016/j.aej.2013.02.004.

[36]

J. Moor, The dartmouth college artificial intelligence conference: The next fifty years, Ai Magazine, 27 (2006), 87-87. 

[37]

F. Mora-Camino and C. A. N. Cosenza, Fuzzy dual numbers, in fuzzy dual numbers, Springer, (2018), 11–16.

[38]

M. Mosleh, Fuzzy neural network for solving a system of fuzzy differential equations, Applied Soft Computing, 13 (2013), 3597-3607.  doi: 10.1016/j.asoc.2013.04.013.

[39]

M. A. Nielsen, Neural Networks and Deep Learning, Vol. 25, Determination Press, 2015.

[40]

B. Pachpatte, On mixed Volterra-Fredholm type integral equations, Indian J. Pure Appl. Math., 17 (1986), 488-496. 

[41]

J. Y. Park and J. U. Jeong, On the existence and uniqueness of solutions of fuzzy Volterra-Fredholm integral equations, Fuzzy Sets and Systems, 115 (2000), 425-431.  doi: 10.1016/S0165-0114(98)00341-8.

[42]

W. Pedrycz, Fuzzy Modelling: Paradigms and Practice, Vol. 7, Springer Science & Business Media, 2012. doi: 10.1007/978-1-4613-1365-6.

[43] T. A. Polk and C. M. Seifert, Cognitive Modeling, MIT Press, 2002. 
[44]

V. Raju and R. Jayagopal, An arithmetic operations of icosagonal fuzzy number using Alpha cut, International Journal of Pure and Applied Mathematics, 120 (2018), 137-145. 

[45]

A. L. Samuel, Some studies in machine learning using the game of checkers, IBM J. Res. Develop., 3 (1959), 211-229.  doi: 10.1147/rd.33.0210.

[46]

S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24 (1987), 319-330.  doi: 10.1016/0165-0114(87)90030-3.

[47]

P. SibiS. A. Jones and P. Siddarth, Analysis of different activation functions using back propagation neural networks, Journal of Theoretical and Applied Information Technology, 47 (2013), 1264-1268. 

[48]

R. Subramanian, Emergent AI, Social Robots and the Law: Security, Privacy and Policy Issues, Journal of International, Technology and Information Management, 26 (2017).

[49]

E. A. Wan, Time Series Prediction by using a Connectionist Network with Internal Delay Lines, Addison-Wesley Publishing Co, 1993.

[50] P. P. Wang and S. K. Chang, Fuzzy Sets: Theory and Applications to Policy Analysis and Information Systems, Plenum Press, New York-London, 1980. 
[51]

A.-M. Wazwaz, A First Course in Integral Equations, 2$^{nd}$ edition, World Scientific Publishing Company, Co. Pte. Ltd., Hackensack, NJ, 2015.

[52]

P. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph. D. dissertation, Harvard University, 1975.

[53]

J. Yuan and S. Yu, Privacy preserving back-propagation neural network learning made practical with cloud computing, IEEE Transactions on Parallel and Distributed Systems, 25 (2013), 212-221. 

[54]

L. A. Zadeh and F. sets, Fuzzy sets, Information and Control, 8 (1965), 338-353.  doi: 10.1016/S0019-9958(65)90241-X.

[1]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3529-3539. doi: 10.3934/dcdss.2020432

[2]

Natalia Skripnik. Averaging of fuzzy integral equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118

[3]

Junjie Peng, Ning Chen, Jiayang Dai, Weihua Gui. A goethite process modeling method by Asynchronous Fuzzy Cognitive Network based on an improved constrained chicken swarm optimization algorithm. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1269-1287. doi: 10.3934/jimo.2020021

[4]

Z. K. Eshkuvatov, M. Kammuji, Bachok M. Taib, N. M. A. Nik Long. Effective approximation method for solving linear Fredholm-Volterra integral equations. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 77-88. doi: 10.3934/naco.2017004

[5]

Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099

[6]

Yong Zhao, Qishao Lu. Periodic oscillations in a class of fuzzy neural networks under impulsive control. Conference Publications, 2011, 2011 (Special) : 1457-1466. doi: 10.3934/proc.2011.2011.1457

[7]

Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046

[8]

Wenjuan Jia, Yingjie Deng, Chenyang Xin, Xiaodong Liu, Witold Pedrycz. A classification algorithm with Linear Discriminant Analysis and Axiomatic Fuzzy Sets. Mathematical Foundations of Computing, 2019, 2 (1) : 73-81. doi: 10.3934/mfc.2019006

[9]

Yunsai Chen, Zhao Yang, Liang Ma, Peng Li, Yongjie Pang, Xin Zhao, Wenyi Yang. Efficient extraction algorithm for local fuzzy features of dynamic images. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1311-1325. doi: 10.3934/dcdss.2019090

[10]

Boguslaw Twarog, Robert Pekala, Jacek Bartman, Zbigniew Gomolka. The changes of air gap in inductive engines as vibration indicator aided by mathematical model and artificial neural network. Conference Publications, 2007, 2007 (Special) : 1005-1012. doi: 10.3934/proc.2007.2007.1005

[11]

Jiaquan Zhan, Fanyong Meng. Cores and optimal fuzzy communication structures of fuzzy games. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1187-1198. doi: 10.3934/dcdss.2019082

[12]

Xiaodong Liu, Wanquan Liu. The framework of axiomatics fuzzy sets based fuzzy classifiers. Journal of Industrial and Management Optimization, 2008, 4 (3) : 581-609. doi: 10.3934/jimo.2008.4.581

[13]

Juan J. Nieto, M. Victoria Otero-Espinar, Rosana Rodríguez-López. Dynamics of the fuzzy logistic family. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 699-717. doi: 10.3934/dcdsb.2010.14.699

[14]

Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619

[15]

İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics and Games, 2021, 8 (3) : 267-275. doi: 10.3934/jdg.2021010

[16]

Mohammed Sabah Mahmoud, Fatima Mahmood Hasan, Omar Saber Qasim. Gene subset selection using fuzzy statistical dependence technique and binary bat algorithm. Journal of Dynamics and Games, 2022  doi: 10.3934/jdg.2022011

[17]

Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826

[18]

T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure and Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277

[19]

Noui Djaidja, Mostefa Nadir. Comparison between Taylor and perturbed method for Volterra integral equation of the first kind. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 487-493. doi: 10.3934/naco.2020039

[20]

Zheng Chen, Liu Liu, Lin Mu. Solving the linear transport equation by a deep neural network approach. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 669-686. doi: 10.3934/dcdss.2021070

 Impact Factor: 

Metrics

  • PDF downloads (142)
  • HTML views (182)
  • Cited by (0)

[Back to Top]