November  2021, 4(4): 253-269. doi: 10.3934/mfc.2021014

Convex combination of data matrices: PCA perturbation bounds for multi-objective optimal design of mechanical metafilters

1. 

IMT School for Advanced Studies, AXES Research Unit, Piazza S. Francesco, 19, 55100 Lucca, Italy

2. 

University of Genoa, Department of Civil, Chemical and Environmental Engineering, Via Montallegro, 1, 16145 Genova, Italy

* Corresponding author: Giorgio Gnecco

Received  April 2021 Revised  July 2021 Published  November 2021 Early access  August 2021

Fund Project: A. Bacigalupo and G. Gnecco are members of INdAM. The authors acknowledge financial support from INdAM-GNAMPA, from INdAM-GNFM (project Trade-off between Number of Examples and Precision in Variations of the Fixed-Effects Panel Data Model), from the Università Italo Francese (projects GALILEO 2019 no. G19-48 and GALILEO 2021 no. G21 89), from the Compagnia di San Paolo (project MINIERA no. I34I20000380007), and from the University of Trento (project UNMASKED 2020)

In the present study, matrix perturbation bounds on the eigenvalues and on the invariant subspaces found by principal component analysis is investigated, for the case in which the data matrix on which principal component analysis is performed is a convex combination of two data matrices. The application of the theoretical analysis to multi-objective optimization problems – e.g., those arising in the design of mechanical metamaterial filters – is also discussed, together with possible extensions.

Citation: Giorgio Gnecco, Andrea Bacigalupo. Convex combination of data matrices: PCA perturbation bounds for multi-objective optimal design of mechanical metafilters. Mathematical Foundations of Computing, 2021, 4 (4) : 253-269. doi: 10.3934/mfc.2021014
References:
[1]

O. B. Augusto, F. Bennis and S. Caro, Multiobjective optimization involving quadratic functions, Journal of Optimization, 2014 (2014).

[2]

A. Bacigalupo, G. Gnecco, M. Lepidi and L. Gambarotta, Computational design of innovative mechanical metafilters via adaptive surrogate-based optimization, Comput. Methods Appl. Mech. Engrg., 375 (2021), 22pp. doi: 10.1016/j.cma.2020.113623.

[3]

A. Bacigalupo, G. Gnecco, M. Lepidi and L. Gambarotta, Multi-objective optimal design of mechanical metafilters, Submitted, (2021).

[4]

A. BacigalupoG. GneccoM. Lepidi and L. Gambarotta, Machine-learning techniques for the optimal design of acoustic metamaterials, J. Optim. Theory Appl., 187 (2020), 630-653.  doi: 10.1007/s10957-019-01614-8.

[5]

T. Chartier, When Life Is Linear: From Computer Graphics to Bracketology, The Mathematical Association of America, 2015. doi: 10.5948/9781614446163.

[6]

Y. Collette and P. Siarry, Multiobjective Optimization: Principles and Case Studies, Decision Engineering. Springer-Verlag, Berlin, 2003.

[7]

G. Gnecco and A. Bacigalupo, On principal component analysis of the convex combination of two data matrices and its application to acoustic metamaterial filters, In Proceedings of the Seventh International Conference on Machine Learning, Optimization, and Data Science (LOD), Lecture Notes in Computer Science, Forthcoming, (2021).

[8]

G. Gnecco, A. Bacigalupo, F. Fantoni and D. Selvi, Principal component analysis applied to gradient fields in band gap optimization problems for metamaterials, In IProceedings of the Sixth International Conference on Metamaterials and Nanophotonics (METANANO), Forthcoming, (2021).

[9]

G. Gnecco and M. Sanguineti, Accuracy of suboptimal solutions to kernel principal component analysis, Comput. Optim. Appl., 42 (2009), 265-287.  doi: 10.1007/s10589-007-9108-y.

[10] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.  doi: 10.1017/CBO9780511840371.
[11]

I. T. Jolliffe, Principal Component Analysis, Springer, 2002.

[12]

I. Y. Kim and O. L. de Weck, Adaptive weighted-sum method for bi-objective optimization: Pareto front generation, Structural and Multidisciplinary Optimization, 29 (2005), 149-158. 

[13]

R. Mathar, G. Alirezaei, E. Balda and A. Behboodi, Fundamentals of Data Analytics: With a View to Machine Learning, Springer, 2020. doi: 10.1007/978-3-030-56831-3.

[14] P. A. Ruud, An Introduction to Classical Econometric Theory, Oxford University Press, 2000. 
[15] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge University Press, 2004. 
[16] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, 1990. 
[17]

G. Tzimiropoulos, S. Zafeiriou and M. Pantic, Principal component analysis of image gradient orientations for face recognition, In Proceedings of the Ninth IEEE International Conference on Automatic Face & Gesture Recognition (FG), (2011), 553–558.

[18]

G. TzimiropoulosS. Zafeiriou and M. Pantic, Subspace learning from image gradient orientations, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34 (2012), 2454-2466. 

[19]

F. Vadalà, A. Bacigalupo, M. Lepidi and L. Gambarotta, Free and forced wave propagation in beam lattice metamaterials with viscoelastic resonators, International Journal of Mechanical Sciences, 193 (2021).

[20]

P.-Å. Wedin, Perturbation bounds in connection with singular value decomposition, Nordisk Tidskr. Informationsbehandling (BIT), 12 (1972), 99-111.  doi: 10.1007/bf01932678.

[21]

Y. YuT. Wang and R.-J. Samworth, A useful variant of the Davis-Kahan theorem for statisticians, Biometrika, 102 (2015), 315-323.  doi: 10.1093/biomet/asv008.

[22]

P. Zhu and A. V. Knyazev, Angles between subspaces and their tangents, J. Numer. Math., 21 (2013), 325-340.  doi: 10.1515/jnum-2013-0013.

show all references

References:
[1]

O. B. Augusto, F. Bennis and S. Caro, Multiobjective optimization involving quadratic functions, Journal of Optimization, 2014 (2014).

[2]

A. Bacigalupo, G. Gnecco, M. Lepidi and L. Gambarotta, Computational design of innovative mechanical metafilters via adaptive surrogate-based optimization, Comput. Methods Appl. Mech. Engrg., 375 (2021), 22pp. doi: 10.1016/j.cma.2020.113623.

[3]

A. Bacigalupo, G. Gnecco, M. Lepidi and L. Gambarotta, Multi-objective optimal design of mechanical metafilters, Submitted, (2021).

[4]

A. BacigalupoG. GneccoM. Lepidi and L. Gambarotta, Machine-learning techniques for the optimal design of acoustic metamaterials, J. Optim. Theory Appl., 187 (2020), 630-653.  doi: 10.1007/s10957-019-01614-8.

[5]

T. Chartier, When Life Is Linear: From Computer Graphics to Bracketology, The Mathematical Association of America, 2015. doi: 10.5948/9781614446163.

[6]

Y. Collette and P. Siarry, Multiobjective Optimization: Principles and Case Studies, Decision Engineering. Springer-Verlag, Berlin, 2003.

[7]

G. Gnecco and A. Bacigalupo, On principal component analysis of the convex combination of two data matrices and its application to acoustic metamaterial filters, In Proceedings of the Seventh International Conference on Machine Learning, Optimization, and Data Science (LOD), Lecture Notes in Computer Science, Forthcoming, (2021).

[8]

G. Gnecco, A. Bacigalupo, F. Fantoni and D. Selvi, Principal component analysis applied to gradient fields in band gap optimization problems for metamaterials, In IProceedings of the Sixth International Conference on Metamaterials and Nanophotonics (METANANO), Forthcoming, (2021).

[9]

G. Gnecco and M. Sanguineti, Accuracy of suboptimal solutions to kernel principal component analysis, Comput. Optim. Appl., 42 (2009), 265-287.  doi: 10.1007/s10589-007-9108-y.

[10] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.  doi: 10.1017/CBO9780511840371.
[11]

I. T. Jolliffe, Principal Component Analysis, Springer, 2002.

[12]

I. Y. Kim and O. L. de Weck, Adaptive weighted-sum method for bi-objective optimization: Pareto front generation, Structural and Multidisciplinary Optimization, 29 (2005), 149-158. 

[13]

R. Mathar, G. Alirezaei, E. Balda and A. Behboodi, Fundamentals of Data Analytics: With a View to Machine Learning, Springer, 2020. doi: 10.1007/978-3-030-56831-3.

[14] P. A. Ruud, An Introduction to Classical Econometric Theory, Oxford University Press, 2000. 
[15] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge University Press, 2004. 
[16] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, 1990. 
[17]

G. Tzimiropoulos, S. Zafeiriou and M. Pantic, Principal component analysis of image gradient orientations for face recognition, In Proceedings of the Ninth IEEE International Conference on Automatic Face & Gesture Recognition (FG), (2011), 553–558.

[18]

G. TzimiropoulosS. Zafeiriou and M. Pantic, Subspace learning from image gradient orientations, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34 (2012), 2454-2466. 

[19]

F. Vadalà, A. Bacigalupo, M. Lepidi and L. Gambarotta, Free and forced wave propagation in beam lattice metamaterials with viscoelastic resonators, International Journal of Mechanical Sciences, 193 (2021).

[20]

P.-Å. Wedin, Perturbation bounds in connection with singular value decomposition, Nordisk Tidskr. Informationsbehandling (BIT), 12 (1972), 99-111.  doi: 10.1007/bf01932678.

[21]

Y. YuT. Wang and R.-J. Samworth, A useful variant of the Davis-Kahan theorem for statisticians, Biometrika, 102 (2015), 315-323.  doi: 10.1093/biomet/asv008.

[22]

P. Zhu and A. V. Knyazev, Angles between subspaces and their tangents, J. Numer. Math., 21 (2013), 325-340.  doi: 10.1515/jnum-2013-0013.

Figure 1.  (a) Positive eigenvalues $ \lambda_i({\bf{G}}(\alpha)) $ (green curves, $ i = 1,\ldots,5 $), their best lower bounds derived from the first inequalities in Eqs. (1a) and (1b) in Proposition 1 (blue curves) with $ K = 50 $, and their best upper bounds derived from the same inequalities, still with $ K = 50 $ (red curves); (b) for $ K = 1 $, $ i = 1 $, and each $ \alpha \in [0,1] $: $ \sin(\theta_{1,{\rm min}}(\alpha)) $ (green curve), and smallest upper bound on it, based on the second to last inequalities in Eqs. (11a) and (11b) in Proposition 2 (blue curve)
Figure 2.  Beam lattice metamaterials with viscoelastic resonators and their reference periodic cell [19]
Figure 3.  Floquet-Bloch spectrum maximizing a low-frequency band gap of a mechanical metamaterial filter: (a) $ 3 $-dimensional representation; (b) projection of the spectrum onto a vertical plane
Figure 4.  Floquet-Bloch spectrum maximizing a high-frequency pass band of a mechanical metamaterial filter: (a) $ 3 $-dimensional representation; (b) projection of the spectrum onto a vertical plane
Figure 5.  Floquet-Bloch spectrum maximizing a trade-off between a low-frequency bang gap and a high-frequency pass band of a mechanical metamaterial filter: (a) $ 3 $-dimensional representation; (b) projection of the spectrum onto a vertical plane
[1]

Azam Moradi, Jafar Razmi, Reza Babazadeh, Ali Sabbaghnia. An integrated Principal Component Analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty. Journal of Industrial and Management Optimization, 2019, 15 (2) : 855-879. doi: 10.3934/jimo.2018074

[2]

Yitong Guo, Bingo Wing-Kuen Ling. Principal component analysis with drop rank covariance matrix. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2345-2366. doi: 10.3934/jimo.2020072

[3]

Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022001

[4]

Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu. Strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems and Imaging, 2012, 6 (2) : 357-372. doi: 10.3934/ipi.2012.6.357

[5]

Yuan-mei Xia, Xin-min Yang, Ke-quan Zhao. A combined scalarization method for multi-objective optimization problems. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2669-2683. doi: 10.3934/jimo.2020088

[6]

Shungen Luo, Xiuping Guo. Multi-objective optimization of multi-microgrid power dispatch under uncertainties using interval optimization. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021208

[7]

Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095

[8]

Ankan Bhaumik, Sankar Kumar Roy, Gerhard Wilhelm Weber. Multi-objective linguistic-neutrosophic matrix game and its applications to tourism management. Journal of Dynamics and Games, 2021, 8 (2) : 101-118. doi: 10.3934/jdg.2020031

[9]

Qingshan You, Qun Wan, Yipeng Liu. A short note on strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems and Imaging, 2013, 7 (1) : 305-306. doi: 10.3934/ipi.2013.7.305

[10]

Han Yang, Jia Yue, Nan-jing Huang. Multi-objective robust cross-market mixed portfolio optimization under hierarchical risk integration. Journal of Industrial and Management Optimization, 2020, 16 (2) : 759-775. doi: 10.3934/jimo.2018177

[11]

Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial and Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009

[12]

Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097

[13]

Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089

[14]

Danthai Thongphiew, Vira Chankong, Fang-Fang Yin, Q. Jackie Wu. An on-line adaptive radiation therapy system for intensity modulated radiation therapy: An application of multi-objective optimization. Journal of Industrial and Management Optimization, 2008, 4 (3) : 453-475. doi: 10.3934/jimo.2008.4.453

[15]

Yu Chen, Yonggang Li, Bei Sun, Chunhua Yang, Hongqiu Zhu. Multi-objective chance-constrained blending optimization of zinc smelter under stochastic uncertainty. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021169

[16]

Xiliang Sun, Wanjie Hu, Xiaolong Xue, Jianjun Dong. Multi-objective optimization model for planning metro-based underground logistics system network: Nanjing case study. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021179

[17]

Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1949-1977. doi: 10.3934/jimo.2021051

[18]

Tone-Yau Huang, Tamaki Tanaka. Optimality and duality for complex multi-objective programming. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 121-134. doi: 10.3934/naco.2021055

[19]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial and Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[20]

Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial and Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130

 Impact Factor: 

Metrics

  • PDF downloads (160)
  • HTML views (254)
  • Cited by (0)

Other articles
by authors

[Back to Top]