doi: 10.3934/mfc.2021018
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Sharp upper bounds on the maximum $M$-eigenvalue of fourth-order partially symmetric nonnegative tensors

School of Management Science, Qufu Normal University, Rizhao Shandong, 276800, China

*Corresponding author: Gang Wang

Received  June 2021 Revised  August 2021 Early access September 2021

Fund Project: The authors were supported by the Natural Science Foundation of Shandong Province (ZR2020MA025), the Natural Science Foundation of China (12071250) and High Quality Curriculum of Postgraduate Education in Shandong Province (SDYKC20109)

$ M $-eigenvalues of partially symmetric nonnegative tensors play important roles in the nonlinear elastic material analysis and the entanglement problem of quantum physics. In this paper, we establish two upper bounds for the maximum $ M $-eigenvalue of partially symmetric nonnegative tensors, which improve some existing results. Numerical examples are proposed to verify the efficiency of the obtained results.

Citation: Yuyan Yao, Gang Wang. Sharp upper bounds on the maximum $M$-eigenvalue of fourth-order partially symmetric nonnegative tensors. Mathematical Foundations of Computing, doi: 10.3934/mfc.2021018
References:
[1]

H. CheH. Chen and Y. Wang, On the $M$-eigenvalue estimation of fourth-order partially symmetric tensors, J. Ind. Manag. Optim., 16 (2020), 309-324.  doi: 10.3934/jimo.2018153.  Google Scholar

[2]

S. ChiritaA. Danescu and M. Ciarletta, On the strong ellipticity of the anisotropic linearly elastic materials, J. Elasticity, 87 (2007), 1-27.  doi: 10.1007/s10659-006-9096-7.  Google Scholar

[3]

B. Dacorogna, Necessary and sufficient conditions for strong ellipticity for isotropic functions in any dimension, Discrete Contin. Dyn. Syst. Ser. B., 1 (2001), 257-263.  doi: 10.3934/dcdsb.2001.1.257.  Google Scholar

[4]

G. DahlJ. M. LeinaasJ. Myrheim and E. Ovrum, A tensor product matrix approximation problem in quantum physics, Linear Algebra Appl., 420 (2007), 711-725.  doi: 10.1016/j.laa.2006.08.026.  Google Scholar

[5]

W. DingL. Qi and Y. Wei, $M$-tensors and nonsingular $M$-tensors, Linear Algebra Appl., 439 (2013), 3264-3278.  doi: 10.1016/j.laa.2013.08.038.  Google Scholar

[6]

W. DingJ. LiuL. Qi and H. Yan, Elasticity $M$-tensors and the strong ellipticity condition, Appl. Math. Comput., 373 (2020), 124982.  doi: 10.1016/j.amc.2019.124982.  Google Scholar

[7]

A. DohertyP. Parillo and M. Spedalieri, Distinguishing separable and entangled states, Phys. Rev. Lett., 88 (2002), 187904.  doi: 10.1103/PhysRevLett.88.187904.  Google Scholar

[8]

D. HanH. Dai and L. Qi, Conditions for strong ellipticity of anisotropic elastic materials, J. Elasticity, 97 (2009), 1-13.  doi: 10.1007/s10659-009-9205-5.  Google Scholar

[9]

C. LiY. Li and X. Kong, New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl., 21 (2014), 39-50.  doi: 10.1002/nla.1858.  Google Scholar

[10]

C. Li and Y. Li, An eigenvalue localization set for tensors with applications to determine the positive (semi-) deffiniteness of tensors, Linear Multilinear Algebra, 64 (2016), 587-601.  doi: 10.1080/03081087.2015.1049582.  Google Scholar

[11]

S. Li and Y. Li, Bounds for the $M$-spectral radius of a fourth-order paritally symmetric tensor, J. Inequal. Appl., 218 (2018), 7pp. doi: 10.1186/s13660-018-1610-5.  Google Scholar

[12]

L. QiH. Dai and D. Han, Conditions for strong ellipticity and $M$-eigenvalues, Front. Math. China., 4 (2009), 349-364.  doi: 10.1007/s11464-009-0016-6.  Google Scholar

[13]

L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, 2017.  Google Scholar

[14]

C. Sang, A new Brauer-type $Z$-eigenvalue inclusion set for tensors, Numer. Algorithms, 80 (2019), 781-794.  doi: 10.1007/s11075-018-0506-2.  Google Scholar

[15]

J. Walton and J. Wilber, Sufficient conditions for strong ellipticity for a class of anisotropic materials, Int. J. Non-Linear Mech., 38 (2003), 411-455.  doi: 10.1016/S0020-7462(01)00066-X.  Google Scholar

[16]

G. WangG. Zhou and L. Caccetta, $Z$-eigenvalue inclusion theorems for tensors, Discrete Contin. Dyn. Syst. Ser. B., 22 (2017), 187-198.  doi: 10.3934/dcdsb.2017009.  Google Scholar

[17]

G. WangY. Wang and Y. Wang, Some Ostrowski-type bound estimations of spectral radius for weakly irreducible nonnegative tensors, Linear Multilinear Algebra, 68 (2020), 1817-1834.  doi: 10.1080/03081087.2018.1561823.  Google Scholar

[18]

G. WangL. Sun and L. Liu, $M$-eigenvalues-based sufficient conditions for the positive definiteness of fourth-order partially symmetric tensors, Complexity, 2020 (2020), 2474278.   Google Scholar

[19]

G. Wang and Y. Zhang, $Z$-eigenvalue exclusion theorems for tensors, J. Ind. Manag. Optim., 16 (2020), 1987-1998.  doi: 10.3934/jimo.2019039.  Google Scholar

[20]

G. WangL. Sun and X. Wang, Sharp bounds of the minimum $M$-eigenvalue of elasticity $Z$-tensors and identifying strong ellipticity, J. Appl. Anal. Comput., 11 (2021), 2114-2130.   Google Scholar

[21]

Y. WangL. Qi and X. Zhang, A practical method for computing the largest $M$-eigenvalue of a fourth-order partially symmetric tensor, Numer. Linear Algebra Appl., 16 (2009), 589-601.  doi: 10.1002/nla.633.  Google Scholar

[22]

G. ZhouL. Qi and S. Wu, Efficient algorithms for computing the largest eigenvalue of a nonnegative tensor, Front. Math. China, 8 (2013), 155-168.  doi: 10.1007/s11464-012-0268-4.  Google Scholar

[23]

G. Zhou, G. Wang, L. Qi and M. Alqahtani, A fast algorithm for the spectral radii of weakly reducible nonnegative tensors, Numer. Linear Algebra Appl., 25 (2018), e2134. doi: 10.1002/nla.2134.  Google Scholar

[24]

L. Zubov and A. Rudev, On necessary and sufficient conditions of strong ellipticity of equilibrium equations for certain classes of anisotropic linearly elastic materials, ZAMM Z. Angew. Math. Mech., 96 (2016), 1096-1102.  doi: 10.1002/zamm.201500167.  Google Scholar

show all references

References:
[1]

H. CheH. Chen and Y. Wang, On the $M$-eigenvalue estimation of fourth-order partially symmetric tensors, J. Ind. Manag. Optim., 16 (2020), 309-324.  doi: 10.3934/jimo.2018153.  Google Scholar

[2]

S. ChiritaA. Danescu and M. Ciarletta, On the strong ellipticity of the anisotropic linearly elastic materials, J. Elasticity, 87 (2007), 1-27.  doi: 10.1007/s10659-006-9096-7.  Google Scholar

[3]

B. Dacorogna, Necessary and sufficient conditions for strong ellipticity for isotropic functions in any dimension, Discrete Contin. Dyn. Syst. Ser. B., 1 (2001), 257-263.  doi: 10.3934/dcdsb.2001.1.257.  Google Scholar

[4]

G. DahlJ. M. LeinaasJ. Myrheim and E. Ovrum, A tensor product matrix approximation problem in quantum physics, Linear Algebra Appl., 420 (2007), 711-725.  doi: 10.1016/j.laa.2006.08.026.  Google Scholar

[5]

W. DingL. Qi and Y. Wei, $M$-tensors and nonsingular $M$-tensors, Linear Algebra Appl., 439 (2013), 3264-3278.  doi: 10.1016/j.laa.2013.08.038.  Google Scholar

[6]

W. DingJ. LiuL. Qi and H. Yan, Elasticity $M$-tensors and the strong ellipticity condition, Appl. Math. Comput., 373 (2020), 124982.  doi: 10.1016/j.amc.2019.124982.  Google Scholar

[7]

A. DohertyP. Parillo and M. Spedalieri, Distinguishing separable and entangled states, Phys. Rev. Lett., 88 (2002), 187904.  doi: 10.1103/PhysRevLett.88.187904.  Google Scholar

[8]

D. HanH. Dai and L. Qi, Conditions for strong ellipticity of anisotropic elastic materials, J. Elasticity, 97 (2009), 1-13.  doi: 10.1007/s10659-009-9205-5.  Google Scholar

[9]

C. LiY. Li and X. Kong, New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl., 21 (2014), 39-50.  doi: 10.1002/nla.1858.  Google Scholar

[10]

C. Li and Y. Li, An eigenvalue localization set for tensors with applications to determine the positive (semi-) deffiniteness of tensors, Linear Multilinear Algebra, 64 (2016), 587-601.  doi: 10.1080/03081087.2015.1049582.  Google Scholar

[11]

S. Li and Y. Li, Bounds for the $M$-spectral radius of a fourth-order paritally symmetric tensor, J. Inequal. Appl., 218 (2018), 7pp. doi: 10.1186/s13660-018-1610-5.  Google Scholar

[12]

L. QiH. Dai and D. Han, Conditions for strong ellipticity and $M$-eigenvalues, Front. Math. China., 4 (2009), 349-364.  doi: 10.1007/s11464-009-0016-6.  Google Scholar

[13]

L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, 2017.  Google Scholar

[14]

C. Sang, A new Brauer-type $Z$-eigenvalue inclusion set for tensors, Numer. Algorithms, 80 (2019), 781-794.  doi: 10.1007/s11075-018-0506-2.  Google Scholar

[15]

J. Walton and J. Wilber, Sufficient conditions for strong ellipticity for a class of anisotropic materials, Int. J. Non-Linear Mech., 38 (2003), 411-455.  doi: 10.1016/S0020-7462(01)00066-X.  Google Scholar

[16]

G. WangG. Zhou and L. Caccetta, $Z$-eigenvalue inclusion theorems for tensors, Discrete Contin. Dyn. Syst. Ser. B., 22 (2017), 187-198.  doi: 10.3934/dcdsb.2017009.  Google Scholar

[17]

G. WangY. Wang and Y. Wang, Some Ostrowski-type bound estimations of spectral radius for weakly irreducible nonnegative tensors, Linear Multilinear Algebra, 68 (2020), 1817-1834.  doi: 10.1080/03081087.2018.1561823.  Google Scholar

[18]

G. WangL. Sun and L. Liu, $M$-eigenvalues-based sufficient conditions for the positive definiteness of fourth-order partially symmetric tensors, Complexity, 2020 (2020), 2474278.   Google Scholar

[19]

G. Wang and Y. Zhang, $Z$-eigenvalue exclusion theorems for tensors, J. Ind. Manag. Optim., 16 (2020), 1987-1998.  doi: 10.3934/jimo.2019039.  Google Scholar

[20]

G. WangL. Sun and X. Wang, Sharp bounds of the minimum $M$-eigenvalue of elasticity $Z$-tensors and identifying strong ellipticity, J. Appl. Anal. Comput., 11 (2021), 2114-2130.   Google Scholar

[21]

Y. WangL. Qi and X. Zhang, A practical method for computing the largest $M$-eigenvalue of a fourth-order partially symmetric tensor, Numer. Linear Algebra Appl., 16 (2009), 589-601.  doi: 10.1002/nla.633.  Google Scholar

[22]

G. ZhouL. Qi and S. Wu, Efficient algorithms for computing the largest eigenvalue of a nonnegative tensor, Front. Math. China, 8 (2013), 155-168.  doi: 10.1007/s11464-012-0268-4.  Google Scholar

[23]

G. Zhou, G. Wang, L. Qi and M. Alqahtani, A fast algorithm for the spectral radii of weakly reducible nonnegative tensors, Numer. Linear Algebra Appl., 25 (2018), e2134. doi: 10.1002/nla.2134.  Google Scholar

[24]

L. Zubov and A. Rudev, On necessary and sufficient conditions of strong ellipticity of equilibrium equations for certain classes of anisotropic linearly elastic materials, ZAMM Z. Angew. Math. Mech., 96 (2016), 1096-1102.  doi: 10.1002/zamm.201500167.  Google Scholar

Table1 
References upper bounds
Theorem 1 of [11] $ \rho_M(\mathcal{A})\leq 12.6843 $
Theorem 2 of [11] $ \rho_M(\mathcal{A})\leq 10.2397 $
Theorem 3.1 of [1] $ \rho_M(\mathcal{A})\leq 15.7124 $
Theorem 3.3 of [1] $ \rho_M(\mathcal{A})\leq 15.7124 $
Theorem 3.5 of [1] $ \rho_M(\mathcal{A})\leq 15.4805 $
Theorem 3.2 $ \rho_M(\mathcal{A})\leq 8.1096 $
Theorem 3.3 $ \rho_M(\mathcal{A})\leq 8.1096 $
References upper bounds
Theorem 1 of [11] $ \rho_M(\mathcal{A})\leq 12.6843 $
Theorem 2 of [11] $ \rho_M(\mathcal{A})\leq 10.2397 $
Theorem 3.1 of [1] $ \rho_M(\mathcal{A})\leq 15.7124 $
Theorem 3.3 of [1] $ \rho_M(\mathcal{A})\leq 15.7124 $
Theorem 3.5 of [1] $ \rho_M(\mathcal{A})\leq 15.4805 $
Theorem 3.2 $ \rho_M(\mathcal{A})\leq 8.1096 $
Theorem 3.3 $ \rho_M(\mathcal{A})\leq 8.1096 $
Table2 
References upper bounds
Theorem 1 of [11] $ \rho_M(\mathcal{A})\leq 5.3333 $
Theorem 2 of [11] $ \rho_M(\mathcal{A})\leq 4.7889 $
Theorem 3.1 of [1] $ \rho_M(\mathcal{A})\leq 4.7889 $
Theorem 3.3 of [1] $ \rho_M(\mathcal{A})\leq 4.5776 $
Theorem 3.5 of [1] $ \rho_M(\mathcal{A})\leq 4.7889 $
Theorem 3.2 $ \rho_M(\mathcal{A})\leq 4.0000 $
Theorem 3.3 $ \rho_M(\mathcal{A})\leq 3.7686 $
References upper bounds
Theorem 1 of [11] $ \rho_M(\mathcal{A})\leq 5.3333 $
Theorem 2 of [11] $ \rho_M(\mathcal{A})\leq 4.7889 $
Theorem 3.1 of [1] $ \rho_M(\mathcal{A})\leq 4.7889 $
Theorem 3.3 of [1] $ \rho_M(\mathcal{A})\leq 4.5776 $
Theorem 3.5 of [1] $ \rho_M(\mathcal{A})\leq 4.7889 $
Theorem 3.2 $ \rho_M(\mathcal{A})\leq 4.0000 $
Theorem 3.3 $ \rho_M(\mathcal{A})\leq 3.7686 $
[1]

Haitao Che, Haibin Chen, Yiju Wang. On the M-eigenvalue estimation of fourth-order partially symmetric tensors. Journal of Industrial & Management Optimization, 2020, 16 (1) : 309-324. doi: 10.3934/jimo.2018153

[2]

Yining Gu, Wei Wu. Partially symmetric nonnegative rectangular tensors and copositive rectangular tensors. Journal of Industrial & Management Optimization, 2019, 15 (2) : 775-789. doi: 10.3934/jimo.2018070

[3]

Haitao Che, Haibin Chen, Guanglu Zhou. New M-eigenvalue intervals and application to the strong ellipticity of fourth-order partially symmetric tensors. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3685-3694. doi: 10.3934/jimo.2020139

[4]

Chaoqian Li, Yaqiang Wang, Jieyi Yi, Yaotang Li. Bounds for the spectral radius of nonnegative tensors. Journal of Industrial & Management Optimization, 2016, 12 (3) : 975-990. doi: 10.3934/jimo.2016.12.975

[5]

Zhen Wang, Wei Wu. Bounds for the greatest eigenvalue of positive tensors. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1031-1039. doi: 10.3934/jimo.2014.10.1031

[6]

Jun He, Guangjun Xu, Yanmin Liu. Some inequalities for the minimum M-eigenvalue of elasticity M-tensors. Journal of Industrial & Management Optimization, 2020, 16 (6) : 3035-3045. doi: 10.3934/jimo.2019092

[7]

Juan Meng, Yisheng Song. Upper bounds for Z$ _1 $-eigenvalues of generalized Hilbert tensors. Journal of Industrial & Management Optimization, 2020, 16 (2) : 911-918. doi: 10.3934/jimo.2018184

[8]

Gang Wang, Yiju Wang, Yuan Zhang. Brualdi-type inequalities on the minimum eigenvalue for the Fan product of M-tensors. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2551-2562. doi: 10.3934/jimo.2019069

[9]

Xifu Liu, Shuheng Yin, Hanyu Li. C-eigenvalue intervals for piezoelectric-type tensors via symmetric matrices. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3349-3356. doi: 10.3934/jimo.2020122

[10]

Qilong Zhai, Ran Zhang. Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 403-413. doi: 10.3934/dcdsb.2018091

[11]

Nur Fadhilah Ibrahim. An algorithm for the largest eigenvalue of nonhomogeneous nonnegative polynomials. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 75-91. doi: 10.3934/naco.2014.4.75

[12]

Yaotang Li, Suhua Li. Exclusion sets in the Δ-type eigenvalue inclusion set for tensors. Journal of Industrial & Management Optimization, 2019, 15 (2) : 507-516. doi: 10.3934/jimo.2018054

[13]

Gang Wang, Guanglu Zhou, Louis Caccetta. Z-Eigenvalue Inclusion Theorems for Tensors. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 187-198. doi: 10.3934/dcdsb.2017009

[14]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

[15]

Yining Gu, Wei Wu. New bounds for eigenvalues of strictly diagonally dominant tensors. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 203-210. doi: 10.3934/naco.2018012

[16]

Alexandre Girouard, Iosif Polterovich. Upper bounds for Steklov eigenvalues on surfaces. Electronic Research Announcements, 2012, 19: 77-85. doi: 10.3934/era.2012.19.77

[17]

Hua Chen, Hong-Ge Chen. Estimates the upper bounds of Dirichlet eigenvalues for fractional Laplacian. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021117

[18]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[19]

Gang Wang, Yuan Zhang. $ Z $-eigenvalue exclusion theorems for tensors. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1987-1998. doi: 10.3934/jimo.2019039

[20]

Jun He, Guangjun Xu, Yanmin Liu. New Z-eigenvalue localization sets for tensors with applications. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021058

 Impact Factor: 

Metrics

  • PDF downloads (45)
  • HTML views (67)
  • Cited by (0)

Other articles
by authors

[Back to Top]