November  2021, 4(4): 281-297. doi: 10.3934/mfc.2021019

Sampling in $ \Lambda $-shift-invariant subspaces of Hilbert-Schmidt operators on $ L^2(\mathbb{R}^d) $

Departamento de Matemáticas, Universidad Carlos Ⅲ de Madrid, Leganés, 28911, Spain

Received  April 2021 Revised  August 2021 Published  November 2021 Early access  September 2021

Fund Project: The author is supported by the grant MTM2017-84098-P from the Spanish Ministerio de Economía y Competitividad (MINECO)

The translation of an operator is defined by using conjugation with time-frequency shifts. Thus, one can define $ \Lambda $-shift-invariant subspaces of Hilbert-Schmidt operators, finitely generated, with respect to a lattice $ \Lambda $ in $ \mathbb{R}^{2d} $. These spaces can be seen as a generalization of classical shift-invariant subspaces of square integrable functions. Obtaining sampling results for these subspaces appears as a natural question that can be motivated by the problem of channel estimation in wireless communications. These sampling results are obtained in the light of the frame theory in a separable Hilbert space.

Citation: Antonio G. García. Sampling in $ \Lambda $-shift-invariant subspaces of Hilbert-Schmidt operators on $ L^2(\mathbb{R}^d) $. Mathematical Foundations of Computing, 2021, 4 (4) : 281-297. doi: 10.3934/mfc.2021019
References:
[1]

A. AldroubiQ. Sun and W. S. Tang, Convolution, average sampling, and a Calderon resolution of the identity for shift-invariant spaces, J. Fourier Anal. Appl., 11 (2005), 215-244.  doi: 10.1007/s00041-005-4003-3.  Google Scholar

[2]

J. J. Benedetto and G. E. Pfander, Frame expansions for Gabor multipliers, Appl. Comput. Harmon. Anal., 20 (2006), 26-40.  doi: 10.1016/j.acha.2005.03.002.  Google Scholar

[3]

O. Christensen, An Introduction to Frames and Riesz Bases, 2$^nd$ edition, Birkhäuser, Basel, 2016.  Google Scholar

[4]

J. B. Conway, A Course in Operator Theory, American Mathematical Society, Providence, RI, 2000.  Google Scholar

[5]

A. Deitmar and S. Echterhoff, Principles of Harmonic Analysis, 2$^nd$ edition, Universitext, Springer, Cham, 2014.  Google Scholar

[6]

H. G. Feichtinger, Spline-type spaces in Gabor analysis, Wavelet Analysis (Hong Kong, 2001), Ser. Anal., World Sci. Publ., River Edge, NJ, 1 (2002), 100-122.   Google Scholar

[7]

H. G. Feichtinger, F. Luef and T. Wherter, A guided tour from linear algebra to the foundations of Gabor analysis, Gabor and Wavelet frames, (eds. Say Song Goh et al.), Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., World Sci. Publ., Hackensack, NJ, 10 (2007), 1–49. doi: 10.1142/9789812709080_0001.  Google Scholar

[8]

H. R. Fernández-MoralesA. G. GarcíaM. A. Hernández-Medina and M. J. Muñoz-Bouzo, Generalized sampling: From shift-invariant to $U$-invariant spaces, Anal. Appl., 13 (2015), 303-329.  doi: 10.1142/S0219530514500213.  Google Scholar

[9] G. B. Folland, Harmonic Analysis in Phase Space, Princeton University Press, Princeton NJ, 1989.   Google Scholar
[10] G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton FL, 1995.   Google Scholar
[11]

H. Führ, Abstract Harmonic Analysis of Continuous Wavelet Transform, Lecture Notes in Mathematics, 1863, Springer-Verlag, Berlin, 2005. doi: 10.1007/b104912.  Google Scholar

[12]

A. G. García, Average sampling in certain subspaces of Hilbert-Schmidt operators on $L^2(\mathbb{R}^d)$, Sampl. Theory Signal Process. Data Anal., 19 (2021), 10.   Google Scholar

[13]

A. G. García and G. Pérez-Villalón, Dual frames in ${L}^2(0, 1)$ connected with generalized sampling in shift-invariant spaces, Appl. Comput. Harmon. Anal., 20 (2006), 422-433.  doi: 10.1016/j.acha.2005.10.001.  Google Scholar

[14]

A. G. GarcíaM. A. Hernández-Medina and G. Pérez-Villalón, Generalized sampling in shift-invariant spaces with multiple stable generators, J. Math. Anal. Appl., 337 (2008), 69-84.  doi: 10.1016/j.jmaa.2007.03.083.  Google Scholar

[15]

A. G. García, M. A. Hernández-Medina and G. Pérez-Villalón, Convolution systems on discrete abelian groups as a unifying strategy in sampling theory, Results Math., 75 (2020), 20pp. doi: 10.1007/s00025-020-1164-y.  Google Scholar

[16]

K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Basel, 2001.  Google Scholar

[17]

K. Gröchenig and C. Heil, Modulation spaces and pseudodifferential operators, Integr. Equ. Oper. Theory, 34 (1999), 439-457.  doi: 10.1007/BF01272884.  Google Scholar

[18]

K. Gröchenig and E. Pauwels, Uniqueness and reconstruction theorems for pseudodifferential operators with a bandlimited Kohn-Nirenberg symbol, Adv. Comput. Math., 40 (2014), 49-63.  doi: 10.1007/s10444-013-9297-0.  Google Scholar

[19]

M. S. Jakobsen, On a (no longer) new Segal Algebra: A review of the Feichtinger Algebra, J. Fourier Anal. Appl., 24 (2018), 1579-1660.  doi: 10.1007/s00041-018-9596-4.  Google Scholar

[20]

F. Krahmer and G. E. Pfander, Local sampling and approximation of operators, Construct. Approx., 39 (2014), 541-572.   Google Scholar

[21]

F. Luef and E. Skrettingland, Convolutions for localizations operators, J. Math. Pures Appl., 118 (2018), 288-316.  doi: 10.1016/j.matpur.2017.12.004.  Google Scholar

[22]

G. E. Pfander, Sampling of operators, J. Fourier Anal. Appl., 19 (2013), 612-650.  doi: 10.1007/s00041-013-9269-2.  Google Scholar

[23]

G. E. Pfander and D. F. Walnut, Sampling and reconstruction of operators, IEEE Trans, Inform. Theory, 62 (2016), 435-458.  doi: 10.1109/TIT.2015.2501646.  Google Scholar

[24]

E. Skrettingland, Quantum harmonic analysis on lattices and Gabor multipliers, J. Fourier Anal. Appl., 26 (2020), 37pp. doi: 10.1007/s00041-020-09759-1.  Google Scholar

[25]

T. Strohmer, Pseudodifferential operators and Banach algebras in mobile communications, Appl. Comput. Harmon. Anal., 20 (2006), 237-249.  doi: 10.1016/j.acha.2005.06.003.  Google Scholar

[26]

R. F. Werner, Quantum harmonic analysis on phase space, J. Math. Phys., 25 (1984), 1404-1411.  doi: 10.1063/1.526310.  Google Scholar

show all references

References:
[1]

A. AldroubiQ. Sun and W. S. Tang, Convolution, average sampling, and a Calderon resolution of the identity for shift-invariant spaces, J. Fourier Anal. Appl., 11 (2005), 215-244.  doi: 10.1007/s00041-005-4003-3.  Google Scholar

[2]

J. J. Benedetto and G. E. Pfander, Frame expansions for Gabor multipliers, Appl. Comput. Harmon. Anal., 20 (2006), 26-40.  doi: 10.1016/j.acha.2005.03.002.  Google Scholar

[3]

O. Christensen, An Introduction to Frames and Riesz Bases, 2$^nd$ edition, Birkhäuser, Basel, 2016.  Google Scholar

[4]

J. B. Conway, A Course in Operator Theory, American Mathematical Society, Providence, RI, 2000.  Google Scholar

[5]

A. Deitmar and S. Echterhoff, Principles of Harmonic Analysis, 2$^nd$ edition, Universitext, Springer, Cham, 2014.  Google Scholar

[6]

H. G. Feichtinger, Spline-type spaces in Gabor analysis, Wavelet Analysis (Hong Kong, 2001), Ser. Anal., World Sci. Publ., River Edge, NJ, 1 (2002), 100-122.   Google Scholar

[7]

H. G. Feichtinger, F. Luef and T. Wherter, A guided tour from linear algebra to the foundations of Gabor analysis, Gabor and Wavelet frames, (eds. Say Song Goh et al.), Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., World Sci. Publ., Hackensack, NJ, 10 (2007), 1–49. doi: 10.1142/9789812709080_0001.  Google Scholar

[8]

H. R. Fernández-MoralesA. G. GarcíaM. A. Hernández-Medina and M. J. Muñoz-Bouzo, Generalized sampling: From shift-invariant to $U$-invariant spaces, Anal. Appl., 13 (2015), 303-329.  doi: 10.1142/S0219530514500213.  Google Scholar

[9] G. B. Folland, Harmonic Analysis in Phase Space, Princeton University Press, Princeton NJ, 1989.   Google Scholar
[10] G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton FL, 1995.   Google Scholar
[11]

H. Führ, Abstract Harmonic Analysis of Continuous Wavelet Transform, Lecture Notes in Mathematics, 1863, Springer-Verlag, Berlin, 2005. doi: 10.1007/b104912.  Google Scholar

[12]

A. G. García, Average sampling in certain subspaces of Hilbert-Schmidt operators on $L^2(\mathbb{R}^d)$, Sampl. Theory Signal Process. Data Anal., 19 (2021), 10.   Google Scholar

[13]

A. G. García and G. Pérez-Villalón, Dual frames in ${L}^2(0, 1)$ connected with generalized sampling in shift-invariant spaces, Appl. Comput. Harmon. Anal., 20 (2006), 422-433.  doi: 10.1016/j.acha.2005.10.001.  Google Scholar

[14]

A. G. GarcíaM. A. Hernández-Medina and G. Pérez-Villalón, Generalized sampling in shift-invariant spaces with multiple stable generators, J. Math. Anal. Appl., 337 (2008), 69-84.  doi: 10.1016/j.jmaa.2007.03.083.  Google Scholar

[15]

A. G. García, M. A. Hernández-Medina and G. Pérez-Villalón, Convolution systems on discrete abelian groups as a unifying strategy in sampling theory, Results Math., 75 (2020), 20pp. doi: 10.1007/s00025-020-1164-y.  Google Scholar

[16]

K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Basel, 2001.  Google Scholar

[17]

K. Gröchenig and C. Heil, Modulation spaces and pseudodifferential operators, Integr. Equ. Oper. Theory, 34 (1999), 439-457.  doi: 10.1007/BF01272884.  Google Scholar

[18]

K. Gröchenig and E. Pauwels, Uniqueness and reconstruction theorems for pseudodifferential operators with a bandlimited Kohn-Nirenberg symbol, Adv. Comput. Math., 40 (2014), 49-63.  doi: 10.1007/s10444-013-9297-0.  Google Scholar

[19]

M. S. Jakobsen, On a (no longer) new Segal Algebra: A review of the Feichtinger Algebra, J. Fourier Anal. Appl., 24 (2018), 1579-1660.  doi: 10.1007/s00041-018-9596-4.  Google Scholar

[20]

F. Krahmer and G. E. Pfander, Local sampling and approximation of operators, Construct. Approx., 39 (2014), 541-572.   Google Scholar

[21]

F. Luef and E. Skrettingland, Convolutions for localizations operators, J. Math. Pures Appl., 118 (2018), 288-316.  doi: 10.1016/j.matpur.2017.12.004.  Google Scholar

[22]

G. E. Pfander, Sampling of operators, J. Fourier Anal. Appl., 19 (2013), 612-650.  doi: 10.1007/s00041-013-9269-2.  Google Scholar

[23]

G. E. Pfander and D. F. Walnut, Sampling and reconstruction of operators, IEEE Trans, Inform. Theory, 62 (2016), 435-458.  doi: 10.1109/TIT.2015.2501646.  Google Scholar

[24]

E. Skrettingland, Quantum harmonic analysis on lattices and Gabor multipliers, J. Fourier Anal. Appl., 26 (2020), 37pp. doi: 10.1007/s00041-020-09759-1.  Google Scholar

[25]

T. Strohmer, Pseudodifferential operators and Banach algebras in mobile communications, Appl. Comput. Harmon. Anal., 20 (2006), 237-249.  doi: 10.1016/j.acha.2005.06.003.  Google Scholar

[26]

R. F. Werner, Quantum harmonic analysis on phase space, J. Math. Phys., 25 (1984), 1404-1411.  doi: 10.1063/1.526310.  Google Scholar

[1]

Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325

[2]

P. Chiranjeevi, V. Kannan, Sharan Gopal. Periodic points and periods for operators on hilbert space. Discrete & Continuous Dynamical Systems, 2013, 33 (9) : 4233-4237. doi: 10.3934/dcds.2013.33.4233

[3]

David Gómez-Ullate, Niky Kamran, Robert Milson. Structure theorems for linear and non-linear differential operators admitting invariant polynomial subspaces. Discrete & Continuous Dynamical Systems, 2007, 18 (1) : 85-106. doi: 10.3934/dcds.2007.18.85

[4]

Sasikarn Yeepo, Wicharn Lewkeeratiyutkul, Sujin Khomrutai, Armin Schikorra. On the Calderon-Zygmund property of Riesz-transform type operators arising in nonlocal equations. Communications on Pure & Applied Analysis, 2021, 20 (9) : 2915-2939. doi: 10.3934/cpaa.2021071

[5]

Harun Karsli. On multidimensional Urysohn type generalized sampling operators. Mathematical Foundations of Computing, 2021, 4 (4) : 271-280. doi: 10.3934/mfc.2021015

[6]

Vasso Anagnostopoulou. Stochastic dominance for shift-invariant measures. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 667-682. doi: 10.3934/dcds.2019027

[7]

Bertrand Lods, Mustapha Mokhtar-Kharroubi, Mohammed Sbihi. Spectral properties of general advection operators and weighted translation semigroups. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1469-1492. doi: 10.3934/cpaa.2009.8.1469

[8]

R. Yamapi, R.S. MacKay. Stability of synchronization in a shift-invariant ring of mutually coupled oscillators. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 973-996. doi: 10.3934/dcdsb.2008.10.973

[9]

Rakesh Pilkar, Erik M. Bollt, Charles Robinson. Empirical mode decomposition/Hilbert transform analysis of postural responses to small amplitude anterior-posterior sinusoidal translations of varying frequencies. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1085-1097. doi: 10.3934/mbe.2011.8.1085

[10]

Matthias Täufer, Martin Tautenhahn. Scale-free and quantitative unique continuation for infinite dimensional spectral subspaces of Schrödinger operators. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1719-1730. doi: 10.3934/cpaa.2017083

[11]

Paola Mannucci, Claudio Marchi, Nicoletta Tchou. Asymptotic behaviour for operators of Grushin type: Invariant measure and singular perturbations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 119-128. doi: 10.3934/dcdss.2019008

[12]

Hisayoshi Toyokawa. $\sigma$-finite invariant densities for eventually conservative Markov operators. Discrete & Continuous Dynamical Systems, 2020, 40 (5) : 2641-2669. doi: 10.3934/dcds.2020144

[13]

Wei Lin, Jianhong Wu, Guanrong Chen. Generalized snap-back repeller and semi-conjugacy to shift operators of piecewise continuous transformations. Discrete & Continuous Dynamical Systems, 2007, 19 (1) : 103-119. doi: 10.3934/dcds.2007.19.103

[14]

Ingrid Beltiţă, Anders Melin. The quadratic contribution to the backscattering transform in the rotation invariant case. Inverse Problems & Imaging, 2010, 4 (4) : 599-618. doi: 10.3934/ipi.2010.4.599

[15]

Dmitry Kleinbock, Barak Weiss. Modified Schmidt games and a conjecture of Margulis. Journal of Modern Dynamics, 2013, 7 (3) : 429-460. doi: 10.3934/jmd.2013.7.429

[16]

Oğul Esen, Partha Guha. On the geometry of the Schmidt-Legendre transformation. Journal of Geometric Mechanics, 2018, 10 (3) : 251-291. doi: 10.3934/jgm.2018010

[17]

Xingwang Xu, Paul C. Yang. Positivity of Paneitz operators. Discrete & Continuous Dynamical Systems, 2001, 7 (2) : 329-342. doi: 10.3934/dcds.2001.7.329

[18]

Ana-Maria Acu, Laura Hodis, Ioan Rasa. Multivariate weighted kantorovich operators. Mathematical Foundations of Computing, 2020, 3 (2) : 117-124. doi: 10.3934/mfc.2020009

[19]

Dag Lukkassen, Annette Meidell, Peter Wall. Multiscale homogenization of monotone operators. Discrete & Continuous Dynamical Systems, 2008, 22 (3) : 711-727. doi: 10.3934/dcds.2008.22.711

[20]

Augusto VisintiN. On the variational representation of monotone operators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046

 Impact Factor: 

Metrics

  • PDF downloads (51)
  • HTML views (49)
  • Cited by (0)

Other articles
by authors

[Back to Top]