[1]
|
A. M. Acu, N. Manav and D. F. Sofonea, Approximation properties of $\lambda$-Kantorovich operators, J. Inequal. Appl., 2018 (2018), 12pp.
doi: 10.1186/s13660-018-1795-7.
|
[2]
|
A. Alotaibi, F. Özger and S. A. Mohiuddine and M. A. Alghamdi et al, Approximation of functions by a class of Durrmeyer-Stancu type operators which includes Euler's beta function, Adv. Differ. Equ., 2021 (2021), 14pp.
doi: 10.1186/s13662-020-03164-0.
|
[3]
|
S. N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités, Comm. Soc. Math. Kharkow, 13 (1912), 1-2.
|
[4]
|
H. Bohman, On approximation of continuous and of analytic functions, Ark. Math., 2 (1952), 43-56.
doi: 10.1007/BF02591381.
|
[5]
|
Q. B. Cai, The Bézier variant of Kantorovich type $\lambda$-Bernstein operators, J. Inequal. Appl., 2018 (2018), 10pp.
doi: 10.1186/s13660-018-1688-9.
|
[6]
|
Q. B. Cai, B-Y. Lian and G. Zhou, Approximation properties of $\lambda$-Bernstein operators, J. Inequal. Appl., 2018 (2018), 11pp.
doi: 10.1186/s13660-018-1653-7.
|
[7]
|
X. Chen, J. Tan, Z. Liu and J. Xie, Approximation of functions by a new family of generalized Bernstein operators, J. Math. Anal. Appl., 450 (2017), 244-261.
doi: 10.1016/j.jmaa.2016.12.075.
|
[8]
|
F. Dirik and K. Demirci, Korovkin type approximation theorems in B-statistical sense, Math. Comput. Modelling, 49 (2009), 2037-2044.
doi: 10.1016/j.mcm.2008.11.002.
|
[9]
|
Z. Ditzian and V. Totik, Moduli of Smoothness, Springer-Verlag, New York, 1987.
doi: 10.1007/978-1-4612-4778-4.
|
[10]
|
R. A. DeVore and G. G. Lorentz, Constructive Approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 303. Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-662-02888-9.
|
[11]
|
O. Duman and C. Orhan, Statistical approximation by positive linear operators, Studia Math., 161 (2004), 187-197.
doi: 10.4064/sm161-2-6.
|
[12]
|
M. S. Erdoğan, Ç. Dişibüyük and Ö. E. Oruç, An alternative distribution function estimation method using rational Bernstein polynomials, J. Comput. Appl. Math., 353 (2019), 232-242.
doi: 10.1016/j.cam.2018.12.033.
|
[13]
|
Z. Finta, Remark on Voronovskaja theorem for q-Bernstein operators, Stud. Univ. Babes-Bolyai Math., 56 (2011), 335-339.
|
[14]
|
A. D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32 (2002), 129-138.
doi: 10.1216/rmjm/1030539612.
|
[15]
|
S. G. Gal and H. Gonska, Grüss and Grüss-Voronovskaya-type estimates for some Bernstein-type polynomials of real and complex variables, Jaen J. Approx., 7 (2015), 97-122.
|
[16]
|
G. Grüss, Uber das Maximum des absoluten Betrages von $\frac{1}{b-a}\int_{a}^{b} \vartheta(x)g(x)dx -\frac{1}{(b-a)^2}\int_{a}^{b} \vartheta(x)dx\int_{a}^{b} g (x)dx$, Math. Z., 39 (1935), 215-226.
doi: 10.1007/BF01201355.
|
[17]
|
X. Han, Y. C. Ma and X. L. Huang, A novel generalization of Bézier curve and surface, J. Comput. Appl. Math., 217 (2008), 180-193.
doi: 10.1016/j.cam.2007.06.027.
|
[18]
|
G. Hu, C. Bo and X. Qin, Continuity conditions for Q-Bézier curves of degree n, J. Inequal. Appl., 2017 (2017), 14pp.
doi: 10.1186/s13660-017-1390-3.
|
[19]
|
A. Il'inskii and S. Ostrovska, Convergence of generalized Bernstein polynomials, J. Approx. Theory, 116 (2002), 100-112.
doi: 10.1006/jath.2001.3657.
|
[20]
|
U. Kadak, On relative weighted summability in modular function spaces and associated approximation theorems, Positivity, 21 (2017), 1593-1614.
doi: 10.1007/s11117-017-0487-8.
|
[21]
|
U. Kadak, V. N. Mishra and S. Pandey, Chlodowsky type generalization of (p, q)-Szász operators involving Brenke type polynomials, Rev. R. Acad. Cienc. Exactas F¨ªs. Nat. Ser. A Mat. RACSAM, 112 (2018), 1443-1462.
doi: 10.1007/s13398-017-0439-y.
|
[22]
|
L. Kantorovich, Sur certains développements suivant les polyn\^{o}mes de la forme de S. Bernstein, Ⅰ, Ⅱ, C. R. Acad. Sci. URSS, (1930), 595–600.
|
[23]
|
H. Khosravian-Arab, M. Dehghan and M. R. Eslahchi, A new approach to improve the order of approximation of the Bernstein operators: Theory and applications, Numer. Algor., 77 (2018), 111-150.
doi: 10.1007/s11075-017-0307-z.
|
[24]
|
P. P. Korovkin, On convergence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk. SSSR, 90 (1953), 961-964.
|
[25]
|
U. Kadak, Generalized statistical convergence based on fractional order difference operator and its applications to approximation theorems, Iran. J. Sci. Technol. Trans. A Sci., 43 (2019), 225-237.
doi: 10.1007/s40995-017-0400-0.
|
[26]
|
U. Kadak, Generalized weighted invariant mean based on fractional difference operato r with applications to approximation theorems for functions of two variables, Results Math., 72 (2017), 1181-1202.
doi: 10.1007/s00025-016-0634-8.
|
[27]
|
U. Kadak, Modularly weighted four dimensional matrix summability with application to Korovkin type approximation theorem, J. Math. Anal. Appl., 468 (2018), 38-63.
doi: 10.1016/j.jmaa.2018.06.047.
|
[28]
|
U. Kadak, N. L. Braha and H. M. Srivastava, Statistical weighted B-summability and its applications to approximation theorems, Appl. Math. Comput., 302 (2017), 80-96.
doi: 10.1016/j.amc.2017.01.011.
|
[29]
|
U. Kadak and M. Ŏzlŭk, Extended Bernstein-Kantorovich-Stancu operators with multiple parameters and approximation properties, Numer. Funct. Anal. Optim., 42 (2021), 523-550.
doi: 10.1080/01630563.2021.1895833.
|
[30]
|
K. Kanat and M. Sofyalioğlu, Some approximation results for Stancu type Lupaş-Schurer operators based on (p, q)-sntegers, Appl. Math. Comput., 317 (2018), 129-142.
doi: 10.1016/j.amc.2017.08.046.
|
[31]
|
A. Kajla, S. A. Mohiuddine and A. Alotaibi, Blending-type approximation by Lupaş-Durrmeyer-type operators involving Pólya distribution, Math. Meth. Appl. Sci., 44 (2021), 9407-9418.
doi: 10.1002/mma.7368.
|
[32]
|
I. Kucukoglu, B. Simsek and Y. Simsek, Multidimensional Bernstein polynomials and Bezier curves: Analysis of machine learning algorithm for facial expression recognition based on curvature, Appl. Math. Comput., 344–345 (2019), 150-162.
doi: 10.1016/j.amc.2018.10.012.
|
[33]
|
S. A. Mohiuddine, N. Ahmad, F. Özger, A. Alotaibi and et al, Approximation by the parametric generalization of Baskakov-Kantorovich operators linking with Stancu operators, Iran J. Sci. Technol. Trans. A Sci., 45 (2021), 593-605.
doi: 10.1007/s40995-020-01024-w.
|
[34]
|
S. A. Mohiuddine and F. Özger, Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter $\alpha$, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 114 (2020), 17pp.
doi: 10.1007/s13398-020-00802-w.
|
[35]
|
S. A. Mohiuddine, Approximation by bivariate generalized Bernstein-Schurer operators and associated GBS operators, Adv. Difference Equ., 2020 (2020), 17pp.
doi: 10.1186/s13662-020-03125-7.
|
[36]
|
S. A. Mohiuddine and B. A. S. Alamri, Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 113 (2019), 1955-1973.
doi: 10.1007/s13398-018-0591-z.
|
[37]
|
S. A. Mohiuddine, T. Acar and A. Alotaibi, Construction of a new family of Bernstein-Kantorovich operators, Math. Meth. Appl. Sci., 40 (2017), 7749-7759.
doi: 10.1002/mma.4559.
|
[38]
|
M. A. Ŏzarslan and H. Aktuğlu, Local approximation properties for certain King type operators, Filomat, 27 (2013), 173-181.
doi: 10.2298/FIL1301173O.
|
[39]
|
F. Özger, Weighted statistical approximation properties of univariate and bivariate $\lambda$-Kantorovich operators, Filomat, 33 (2019), 3473-3486.
doi: 10.2298/FIL1911473O.
|
[40]
|
F. Özger, K. Demirci and S. Yıldız, Approximation by kantorovich variant of $\lambda$-schurer operators and related numerical results, Topics in Contemporary Mathematical Analysis and Applications, Boca Raton, USA: CRC Press, (2020), 77–94.
|
[41]
|
F. Özger, On new Bézier bases with Schurer polynomials and corresponding results in approximation theory, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69 (2020), 376-393.
doi: 10.31801/cfsuasmas.510382.
|
[42]
|
F. Özger, Applications of generalized weighted statistical convergence to approximation theorems for functions of one and two variables, Numer. Funct. Anal. Optim., 41 (2020), 1990-2006.
doi: 10.1080/01630563.2020.1868503.
|
[43]
|
F. Özger, H. M. Srivastava and S. A. Mohiuddine, Approximation of functions by a new class of generalized Bernstein-Schurer operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 114 (2020), 21pp.
doi: 10.1007/s13398-020-00903-6.
|
[44]
|
H. M. Srivastava, F. Özger and S. A. Mohiuddine, Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter $\lambda$, phSymmetry, 11 (2019).
doi: 10.3390/symxx010005.
|
[45]
|
H. M. Srivastava, K. J. Ansari, F. Özger and Z. Ödemiş Özger, A link between approximation theory and summability methods via four-dimensional infinite matrices, Mathematics, 9 (2021), 1895.
doi: 10.3390/math9161895.
|
[46]
|
H. R. Tabrizidooz and K. Shabanpanah, Bernstein polynomial basis for numerical solution of boundary value problems, Numer. Algor., 77 (2018), 211-228.
doi: 10.1007/s11075-017-0311-3.
|
[47]
|
V. K. Weierstrass, Ueber die analytische Darstellbarkeit sogennanter willkürlicher Functionen einer reellen Veranderlichep, sp:, Sitzungsberichte der Akademie zu Berlin, (1885), 633–639.
|
[48]
|
J. X. Xiang, Expansion of moments of Bernstein polynomials, J. Math. Anal. Appl., 476 (2019), 585-594.
doi: 10.1016/j.jmaa.2019.03.072.
|