doi: 10.3934/mfc.2021022
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Some generalizations of delay integral inequalities of Gronwall-Bellman type with power and their applications

School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, China

* Corresponding author: Fanwei Meng

Received  March 2021 Revised  August 2021 Early access October 2021

Noting the diverse generalizations of the Gronwall-Bellman inequality, this paper investigates some new delay integral inequalities with power, deriving explicit bound on the solution and providing an example. The inequalities given here can act as powerful tools for studying qualitative properties such as existence, uniqueness, boundedness, stability and asymptotics of solutions of differential and integral equations.

Citation: Haoyue Song, Fanwei Meng. Some generalizations of delay integral inequalities of Gronwall-Bellman type with power and their applications. Mathematical Foundations of Computing, doi: 10.3934/mfc.2021022
References:
[1]

A. Abdeldaim, Nonlinear retarded integral inequalities of Gronwall-Bellman type and applications, J. Math. Inequal., 10 (2016), 285-299.  doi: 10.7153/jmi-10-24.  Google Scholar

[2]

A. Abdeldaim and M. Yakout, On some new integral inequalities of Gronwall-Bellman-Pachpatte type, Appl. Math. Comput., 217 (2011), 7887-7899.  doi: 10.1016/j.amc.2011.02.093.  Google Scholar

[3]

J.-C. Chang and D. Luor, On some generalized retarded integral inequalities and the qualitative analysis of integral equations, Appl. Math. Comput., 244 (2014), 324-334.  doi: 10.1016/j.amc.2014.06.107.  Google Scholar

[4]

Q. FengF. Meng and B. Zheng, Gronwall-Bellman type nonlinear delay integral inequalities on time scales, J. Math. Anal. Appl., 382 (2011), 772-784.  doi: 10.1016/j.jmaa.2011.04.077.  Google Scholar

[5]

T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Annals of Mathematics, 20 (1919), 292-296.  doi: 10.2307/1967124.  Google Scholar

[6]

J. Gu and F. Meng, Some new nonlinear Volterra-Fredholm type dynamic integral inequalities on time scales, Appl. Math. Comput., 245 (2014), 235-242.  doi: 10.1016/j.amc.2014.07.056.  Google Scholar

[7]

F. Jiang and F. Meng, Explicit bounds on some new nonlinear integral inequality with delay, J. Comput. Appl. Math., 205 (2007), 479-486.  doi: 10.1016/j.cam.2006.05.038.  Google Scholar

[8]

Z. Li and W.-S. Wang, Some new nonlinear powered Gronwall-Bellman type retarded integral inequalities and their applications, J. Math. Inequal., 13 (2019), 553-564.  doi: 10.7153/jmi-2019-13-36.  Google Scholar

[9]

Z. Li and W.-S. Wang, Some nonlinear Gronwall-Bellman type retarded integral inequalities with power and their applications, Appl. Math. Comput., 347 (2019), 839-852.  doi: 10.1016/j.amc.2018.10.019.  Google Scholar

[10] B. G. Pachpatte, Inequalities for Differential and Integral Equations, Academic Press, London, 1998.   Google Scholar
[11]

A. ShakoorI. AliS. Wali and A. Rehman, Some generalizations of retarded nonlinear integral inequalities and its applications, J. Math. Inequal., 14 (2020), 1223-1235.  doi: 10.7153/jmi-2020-14-79.  Google Scholar

[12]

Y. Tian and M. Fan, Nonlinear integral inequality with power and its application in delay integro-differential equations, Advances in Difference Equations, 2020 (2020), 142.  doi: 10.1186/s13662-020-02596-y.  Google Scholar

[13]

Y. TianM. Fan and F. Meng, A generalization of retarded integral inequalities in two independent variables and their applications, Appl. Math. Comput., 221 (2013), 239-248.  doi: 10.1016/j.amc.2013.06.062.  Google Scholar

[14]

W.-S. WangX. Zhou and Z. Guo, Some new retarded nonlinear integral inequalities and their applications in differential-integral equations, Appl. Math. Comput., 218 (2012), 10726-10736.  doi: 10.1016/j.amc.2012.04.046.  Google Scholar

[15]

R. Xu and F. Meng, Some new weakly singular integral inequalities and their applications to fractional differential equations, J. Inequal. Appl., 2016 (2016), 78, 16 pp. doi: 10.1186/s13660-016-1015-2.  Google Scholar

show all references

References:
[1]

A. Abdeldaim, Nonlinear retarded integral inequalities of Gronwall-Bellman type and applications, J. Math. Inequal., 10 (2016), 285-299.  doi: 10.7153/jmi-10-24.  Google Scholar

[2]

A. Abdeldaim and M. Yakout, On some new integral inequalities of Gronwall-Bellman-Pachpatte type, Appl. Math. Comput., 217 (2011), 7887-7899.  doi: 10.1016/j.amc.2011.02.093.  Google Scholar

[3]

J.-C. Chang and D. Luor, On some generalized retarded integral inequalities and the qualitative analysis of integral equations, Appl. Math. Comput., 244 (2014), 324-334.  doi: 10.1016/j.amc.2014.06.107.  Google Scholar

[4]

Q. FengF. Meng and B. Zheng, Gronwall-Bellman type nonlinear delay integral inequalities on time scales, J. Math. Anal. Appl., 382 (2011), 772-784.  doi: 10.1016/j.jmaa.2011.04.077.  Google Scholar

[5]

T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Annals of Mathematics, 20 (1919), 292-296.  doi: 10.2307/1967124.  Google Scholar

[6]

J. Gu and F. Meng, Some new nonlinear Volterra-Fredholm type dynamic integral inequalities on time scales, Appl. Math. Comput., 245 (2014), 235-242.  doi: 10.1016/j.amc.2014.07.056.  Google Scholar

[7]

F. Jiang and F. Meng, Explicit bounds on some new nonlinear integral inequality with delay, J. Comput. Appl. Math., 205 (2007), 479-486.  doi: 10.1016/j.cam.2006.05.038.  Google Scholar

[8]

Z. Li and W.-S. Wang, Some new nonlinear powered Gronwall-Bellman type retarded integral inequalities and their applications, J. Math. Inequal., 13 (2019), 553-564.  doi: 10.7153/jmi-2019-13-36.  Google Scholar

[9]

Z. Li and W.-S. Wang, Some nonlinear Gronwall-Bellman type retarded integral inequalities with power and their applications, Appl. Math. Comput., 347 (2019), 839-852.  doi: 10.1016/j.amc.2018.10.019.  Google Scholar

[10] B. G. Pachpatte, Inequalities for Differential and Integral Equations, Academic Press, London, 1998.   Google Scholar
[11]

A. ShakoorI. AliS. Wali and A. Rehman, Some generalizations of retarded nonlinear integral inequalities and its applications, J. Math. Inequal., 14 (2020), 1223-1235.  doi: 10.7153/jmi-2020-14-79.  Google Scholar

[12]

Y. Tian and M. Fan, Nonlinear integral inequality with power and its application in delay integro-differential equations, Advances in Difference Equations, 2020 (2020), 142.  doi: 10.1186/s13662-020-02596-y.  Google Scholar

[13]

Y. TianM. Fan and F. Meng, A generalization of retarded integral inequalities in two independent variables and their applications, Appl. Math. Comput., 221 (2013), 239-248.  doi: 10.1016/j.amc.2013.06.062.  Google Scholar

[14]

W.-S. WangX. Zhou and Z. Guo, Some new retarded nonlinear integral inequalities and their applications in differential-integral equations, Appl. Math. Comput., 218 (2012), 10726-10736.  doi: 10.1016/j.amc.2012.04.046.  Google Scholar

[15]

R. Xu and F. Meng, Some new weakly singular integral inequalities and their applications to fractional differential equations, J. Inequal. Appl., 2016 (2016), 78, 16 pp. doi: 10.1186/s13660-016-1015-2.  Google Scholar

[1]

Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395

[2]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[3]

István Győri, Ferenc Hartung, Nahed A. Mohamady. Boundedness of positive solutions of a system of nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 809-836. doi: 10.3934/dcdsb.2018044

[4]

Zhen Wang, Xiong Li, Jinzhi Lei. Second moment boundedness of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2963-2991. doi: 10.3934/dcdsb.2014.19.2963

[5]

Kazuki Himoto, Hideaki Matsunaga. The limits of solutions of a linear delay integral equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3033-3048. doi: 10.3934/dcdsb.2020050

[6]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[7]

Farid Tari. Geometric properties of the integral curves of an implicit differential equation. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 349-364. doi: 10.3934/dcds.2007.17.349

[8]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[9]

E. B. Dynkin. A new inequality for superdiffusions and its applications to nonlinear differential equations. Electronic Research Announcements, 2004, 10: 68-77.

[10]

Tomás Caraballo, P.E. Kloeden, Pedro Marín-Rubio. Numerical and finite delay approximations of attractors for logistic differential-integral equations with infinite delay. Discrete & Continuous Dynamical Systems, 2007, 19 (1) : 177-196. doi: 10.3934/dcds.2007.19.177

[11]

Li Wang, Yang Li, Liwei Zhang. A differential equation method for solving box constrained variational inequality problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 183-198. doi: 10.3934/jimo.2011.7.183

[12]

Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188

[13]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[14]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[15]

P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220

[16]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete & Continuous Dynamical Systems, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[17]

Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826

[18]

Kazuhiro Ishige, Tatsuki Kawakami, Kanako Kobayashi. Global solutions for a nonlinear integral equation with a generalized heat kernel. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 767-783. doi: 10.3934/dcdss.2014.7.767

[19]

T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure & Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277

[20]

Mickaël D. Chekroun, Michael Ghil, Honghu Liu, Shouhong Wang. Low-dimensional Galerkin approximations of nonlinear delay differential equations. Discrete & Continuous Dynamical Systems, 2016, 36 (8) : 4133-4177. doi: 10.3934/dcds.2016.36.4133

 Impact Factor: 

Metrics

  • PDF downloads (96)
  • HTML views (68)
  • Cited by (0)

Other articles
by authors

[Back to Top]