# American Institute of Mathematical Sciences

• Previous Article
Convergence of modified Szász-Mirakyan-Durrmeyer operators depending on certain parameters
• MFC Home
• This Issue
• Next Article
On Rogosinski-type approximation processes in Banach space using the framework of the cosine operator function
doi: 10.3934/mfc.2021023
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

## Bound state solutions for fractional Schrödinger-Poisson systems

 School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, China

* Corresponding author: Qi Li

Received  June 2021 Revised  September 2021 Early access October 2021

Fund Project: The first author is supported by NSF of Shandong Province (ZR2020MA005)

In this work, we investigate a class of fractional Schrödinger - Poisson systems
 $\begin{equation*} \left\{\begin{array}{ll}(-\triangle)^s u +V(x)u+\lambda\phi u = \mu u+|u|^{p-1}u, & x\in\ \mathbb{R}^3, \\(-\triangle)^s \phi = u^2, & x\in\ \mathbb{R}^3, \end{array}\right. \end{equation*}$
where
 $s\in(\frac{3}{4}, 1)$
,
 $p\in(3, 5)$
,
 $\lambda$
is a positive parameter. By the variational method, we show that there exists
 $\delta(\lambda)>0$
such that for all
 $\mu\in[\mu_1, \mu_1+\delta(\lambda))$
, the above fractional Schrödinger -Poisson systems possess a nonnegative bound state solutions with positive energy. Here
 $\mu_1$
is the first eigenvalue of
 $(-\triangle)^s +V(x)$
.
Citation: Xinsheng Du, Qi Li, Zengqin Zhao, Gen Li. Bound state solutions for fractional Schrödinger-Poisson systems. Mathematical Foundations of Computing, doi: 10.3934/mfc.2021023
##### References:
 [1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar [2] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.  Google Scholar [3] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.  doi: 10.12775/TMNA.1998.019.  Google Scholar [4] V. Benci and D. Fortunato, Solitary waves of nonlinear Klein-Gordon equation coupled with Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.  doi: 10.1142/S0129055X02001168.  Google Scholar [5] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar [6] G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differ. Equ., 248 (2010), 521-543.  doi: 10.1016/j.jde.2009.06.017.  Google Scholar [7] S.-Y. A. Chang and M. del Mar González, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410-1432.  doi: 10.1016/j.aim.2010.07.016.  Google Scholar [8] X. Chang and Z.-Q. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, 26 (2013), 479-494.  doi: 10.1088/0951-7715/26/2/479.  Google Scholar [9] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar [10] S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional laplacian, Matematiche, 68 (2013), 201-216.  doi: 10.4418/2013.68.1.15.  Google Scholar [11] X. Du and A. Mao, Existence and Multiple of nontrivial solutions for a class of fractional Schrödinger equations, J. Function Space, 2017 (2017), ID3793872, 7 pp. doi: 10.1155/2017/3793872.  Google Scholar [12] P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.  Google Scholar [13] X. He and W. Zou, Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth, J. Math. Phys., 53 (2012), 023702, 19 pp. doi: 10.1063/1.3683156.  Google Scholar [14] X. He and W. Zou, Multiplicity of concentrating positive solutions for Schrödinger-Poisson equations with critical growth, Nonlinear Anal., 170 (2018), 142-170.  doi: 10.1016/j.na.2018.01.001.  Google Scholar [15] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar [16] N. Laskin, Fractional Schrödinger equation, Phys. Rev. E., 66 (2002), 56-108.  doi: 10.1103/PhysRevE.66.056108.  Google Scholar [17] Z. Liu and S. Guo, On ground state solutions for the Schödinger-Poisson equations with critical growth, J. Math. Anal. Appl., 412 (2014), 435-448.  doi: 10.1016/j.jmaa.2013.10.066.  Google Scholar [18] A. Mao, L. Yang, A. Qian and S. Luan, Existence and concentration of solutions of Schrödinger-possion systems, Appl. Math. Lett., 68 (2017), 8-12.  doi: 10.1016/j.aml.2016.12.014.  Google Scholar [19] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.  Google Scholar [20] D. Ruiz, On the Schrödinger-Poisson-Slater systems: Behavior of minimizers, radial and nonradial cases, Arch. Ration. Mech. Anal., 198 (2010), 349-368.  doi: 10.1007/s00205-010-0299-5.  Google Scholar [21] S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $R^N$, J. Math. Phys., 54 (2013), 031501.  doi: 10.1063/1.4793990.  Google Scholar [22] R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.  doi: 10.1090/S0002-9947-2014-05884-4.  Google Scholar [23] X. Shang and J. Zhang, Ground states for fractional Schrödinger equations with critical growth, Nonlinearity, 27 (2014), 187-207.  doi: 10.1088/0951-7715/27/2/187.  Google Scholar [24] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar [25] K. Teng, Multiple solutions for a class of fractional Schrödinger equations in $R^N$, Nonlinear Anal. Real World Appl., 21 (2015), 76-86.  doi: 10.1016/j.nonrwa.2014.06.008.  Google Scholar [26] K. Teng and X. He, Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent, Commun. Pure Appl. Anal., 15 (2016), 991-1008.  doi: 10.3934/cpaa.2016.15.991.  Google Scholar [27] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar [28] L. Zhao and F. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169.  doi: 10.1016/j.jmaa.2008.04.053.  Google Scholar

show all references

##### References:
 [1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar [2] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.  Google Scholar [3] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.  doi: 10.12775/TMNA.1998.019.  Google Scholar [4] V. Benci and D. Fortunato, Solitary waves of nonlinear Klein-Gordon equation coupled with Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.  doi: 10.1142/S0129055X02001168.  Google Scholar [5] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar [6] G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differ. Equ., 248 (2010), 521-543.  doi: 10.1016/j.jde.2009.06.017.  Google Scholar [7] S.-Y. A. Chang and M. del Mar González, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410-1432.  doi: 10.1016/j.aim.2010.07.016.  Google Scholar [8] X. Chang and Z.-Q. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, 26 (2013), 479-494.  doi: 10.1088/0951-7715/26/2/479.  Google Scholar [9] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar [10] S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional laplacian, Matematiche, 68 (2013), 201-216.  doi: 10.4418/2013.68.1.15.  Google Scholar [11] X. Du and A. Mao, Existence and Multiple of nontrivial solutions for a class of fractional Schrödinger equations, J. Function Space, 2017 (2017), ID3793872, 7 pp. doi: 10.1155/2017/3793872.  Google Scholar [12] P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.  Google Scholar [13] X. He and W. Zou, Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth, J. Math. Phys., 53 (2012), 023702, 19 pp. doi: 10.1063/1.3683156.  Google Scholar [14] X. He and W. Zou, Multiplicity of concentrating positive solutions for Schrödinger-Poisson equations with critical growth, Nonlinear Anal., 170 (2018), 142-170.  doi: 10.1016/j.na.2018.01.001.  Google Scholar [15] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar [16] N. Laskin, Fractional Schrödinger equation, Phys. Rev. E., 66 (2002), 56-108.  doi: 10.1103/PhysRevE.66.056108.  Google Scholar [17] Z. Liu and S. Guo, On ground state solutions for the Schödinger-Poisson equations with critical growth, J. Math. Anal. Appl., 412 (2014), 435-448.  doi: 10.1016/j.jmaa.2013.10.066.  Google Scholar [18] A. Mao, L. Yang, A. Qian and S. Luan, Existence and concentration of solutions of Schrödinger-possion systems, Appl. Math. Lett., 68 (2017), 8-12.  doi: 10.1016/j.aml.2016.12.014.  Google Scholar [19] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.  Google Scholar [20] D. Ruiz, On the Schrödinger-Poisson-Slater systems: Behavior of minimizers, radial and nonradial cases, Arch. Ration. Mech. Anal., 198 (2010), 349-368.  doi: 10.1007/s00205-010-0299-5.  Google Scholar [21] S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $R^N$, J. Math. Phys., 54 (2013), 031501.  doi: 10.1063/1.4793990.  Google Scholar [22] R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.  doi: 10.1090/S0002-9947-2014-05884-4.  Google Scholar [23] X. Shang and J. Zhang, Ground states for fractional Schrödinger equations with critical growth, Nonlinearity, 27 (2014), 187-207.  doi: 10.1088/0951-7715/27/2/187.  Google Scholar [24] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar [25] K. Teng, Multiple solutions for a class of fractional Schrödinger equations in $R^N$, Nonlinear Anal. Real World Appl., 21 (2015), 76-86.  doi: 10.1016/j.nonrwa.2014.06.008.  Google Scholar [26] K. Teng and X. He, Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent, Commun. Pure Appl. Anal., 15 (2016), 991-1008.  doi: 10.3934/cpaa.2016.15.991.  Google Scholar [27] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar [28] L. Zhao and F. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169.  doi: 10.1016/j.jmaa.2008.04.053.  Google Scholar
 [1] Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025 [2] Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021, 14 (6) : 1819-1835. doi: 10.3934/dcdss.2021038 [3] Xia Sun, Kaimin Teng. Positive bound states for fractional Schrödinger-Poisson system with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3735-3768. doi: 10.3934/cpaa.2020165 [4] Lun Guo, Wentao Huang, Huifang Jia. Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $\mathbb{R} ^{3}$. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1663-1693. doi: 10.3934/cpaa.2019079 [5] Hangzhou Hu, Yuan Li, Dun Zhao. Ground state for fractional Schrödinger-Poisson equation in Coulomb-Sobolev space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (6) : 1899-1916. doi: 10.3934/dcdss.2021064 [6] Antonio Azzollini, Pietro d’Avenia, Valeria Luisi. Generalized Schrödinger-Poisson type systems. Communications on Pure & Applied Analysis, 2013, 12 (2) : 867-879. doi: 10.3934/cpaa.2013.12.867 [7] Sitong Chen, Wennian Huang, Xianhua Tang. Existence criteria of ground state solutions for Schrödinger-Poisson systems with a vanishing potential. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3055-3066. doi: 10.3934/dcdss.2020339 [8] Qian Shen, Na Wei. Stability of ground state for the Schrödinger-Poisson equation. Journal of Industrial & Management Optimization, 2021, 17 (5) : 2805-2816. doi: 10.3934/jimo.2020095 [9] Marius Ghergu, Gurpreet Singh. On a class of mixed Choquard-Schrödinger-Poisson systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 297-309. doi: 10.3934/dcdss.2019021 [10] Pierre-Damien Thizy. Schrödinger-Poisson systems in $4$-dimensional closed manifolds. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 2257-2284. doi: 10.3934/dcds.2016.36.2257 [11] Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1737-1754. doi: 10.3934/cpaa.2021039 [12] Lirong Huang, Jianqing Chen. Existence and asymptotic behavior of bound states for a class of nonautonomous Schrödinger-Poisson system. Electronic Research Archive, 2020, 28 (1) : 383-404. doi: 10.3934/era.2020022 [13] Xianhua Tang, Sitong Chen. Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 4973-5002. doi: 10.3934/dcds.2017214 [14] Sitong Chen, Xianhua Tang. Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4685-4702. doi: 10.3934/dcdsb.2018329 [15] Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257 [16] Dengfeng Lü. Positive solutions for Kirchhoff-Schrödinger-Poisson systems with general nonlinearity. Communications on Pure & Applied Analysis, 2018, 17 (2) : 605-626. doi: 10.3934/cpaa.2018033 [17] Fangyi Qin, Jun Wang, Jing Yang. Infinitely many positive solutions for Schrödinger-poisson systems with nonsymmetry potentials. Discrete & Continuous Dynamical Systems, 2021, 41 (10) : 4705-4736. doi: 10.3934/dcds.2021054 [18] Zhi Chen, Xianhua Tang, Ning Zhang, Jian Zhang. Standing waves for Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 6103-6129. doi: 10.3934/dcds.2019266 [19] Chunhua Wang, Jing Yang. Positive solutions for a nonlinear Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5461-5504. doi: 10.3934/dcds.2018241 [20] Yong-Yong Li, Yan-Fang Xue, Chun-Lei Tang. Ground state solutions for asymptotically periodic modified Schr$\ddot{\mbox{o}}$dinger-Poisson system involving critical exponent. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2299-2324. doi: 10.3934/cpaa.2019104

Impact Factor:

Article outline