doi: 10.3934/mfc.2021025
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

A new kind of Bi-variate $ \lambda $ -Bernstein-Kantorovich type operator with shifted knots and its associated GBS form

1. 

Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee - 247667, India

2. 

Department of Mathematics, University of Prishtina, Prishtina, Kosovo

* Corresponding author: Rahul Shukla

Dedicated to Prof. R. P. Agarwal on his 74th birthday

Received  June 2021 Revised  August 2021 Early access October 2021

Fund Project: The third author is supported by MoE, Govt. of India as a Senior Research Fellow

In this paper, we introduce a bi-variate case of a new kind of $ \lambda $-Bernstein-Kantorovich type operator with shifted knots defined by Rahman et al. [31]. The rate of convergence of the bi-variate operators is obtained in terms of the complete and partial moduli of continuity. Next, we give an error estimate in the approximation of a function in the Lipschitz class and establish a Voronovskaja type theorem. Also, we define the associated GBS(Generalized Boolean Sum) operators and study the degree of approximation of Bögel continuous and Bögel differentiable functions by these operators with the aid of the mixed modulus of smoothness. Finally, we show the rate of convergence of the bi-variate operators and their GBS case for certain functions by illustrative graphics and tables using MATLAB algorithms.

Citation: Purshottam Narain Agrawal, Behar Baxhaku, Rahul Shukla. A new kind of Bi-variate $ \lambda $ -Bernstein-Kantorovich type operator with shifted knots and its associated GBS form. Mathematical Foundations of Computing, doi: 10.3934/mfc.2021025
References:
[1]

A. M. Acu, N. Manav and D. F. Sofonea, Approximation properties of $\lambda$-Kantorovich operators, J. Inequal. Appl., 202 (2018), Paper No. 202, 12 pp. doi: 10.1186/s13660-018-1795-7.  Google Scholar

[2]

P. N. AgrawalB. Baxhaku and R. Shukla, On q-analogue of a parametric generalization of Baskakov operators, Math. Methods Appl. Sci., 44 (2021), 5989-6004.  doi: 10.1002/mma.7163.  Google Scholar

[3]

R. P. Agarwal and V. Gupta, On $q$-analogue of a complex summation-integral type operators in compact disk, J. Inequal. Appl., 2012 (2012), Article number: 111. doi: 10.1186/1029-242X-2012-111.  Google Scholar

[4]

P. N. Agrawal and N. Ispir, Degree of approximation for bivariate Chlodowsky-Szász-Charlier type operators, Results Math., 69 (2016), 365-385.  doi: 10.1007/s00025-015-0495-6.  Google Scholar

[5]

P. N. AgrawalN. Ispir and A. Kajla, GBS operators of Lupaş-Durrmeyer type based on Pólya distribution, Results Math., 69 (2016), 397-418.  doi: 10.1007/s00025-015-0507-6.  Google Scholar

[6]

G. A. Anastassiou and S. G. Gal, Approximation Theory: Moduli of Continuity and Global Smoothness Preservation, Birkhäuser Boston, Inc., Boston, MA, 2000. doi: 10.1007/978-1-4612-1360-4.  Google Scholar

[7]

A. Aral and V. Gupta, On the Durrmeyer type modification of the $q$-Baskakov type operators, Nonlinear Anal., 72 (2010), 1171-1180.  doi: 10.1016/j.na.2009.07.052.  Google Scholar

[8]

C. BadeaI. BadeaC. Cottin and H. H. Gonska, Notes on degree of approximation of B-continuous and B-differentiable functions, Approx. Theory Appl., 4 (1988), 95-108.   Google Scholar

[9]

C. BadeaI. Badea and H. H. Gonska, A test function theorem and approximation by pseudopolynomials, Bull. Aust. Math. Soc., 34 (1986), 53-64.  doi: 10.1017/S0004972700004494.  Google Scholar

[10]

C. Badea and C. Cottin, Korovkin-type theorem for generalized boolean sum operators, In Colloq. Math. Soc. Jńos Bolyai, North-Holland, Amsterdam, 58 (1991), 51-67.   Google Scholar

[11]

D. Bărbosu, Kantorovich-Schurer bivariate operators, Miskolc Math. Notes, 5 (2004), 129-136.  doi: 10.18514/MMN.2004.71.  Google Scholar

[12]

D. BărbosuA.-M. Acu and C. V. Muraru, On certain GBS-Durrmeyer operators based on $q$-integers, Turk. J. Math., 41 (2017), 368-380.  doi: 10.3906/mat-1601-34.  Google Scholar

[13]

D. Bărbosu and C. V. Muraru, Approximating B-continuous functions using GBS operators of Bernstein-Schurer-Stancu type based on $q$-integers, Appl. Math. Comput., 259 (2015), 80-87.  doi: 10.1016/j.amc.2015.02.030.  Google Scholar

[14]

D. Bărbosu and O. T. Pop, A note on the GBS Bernstein's approximation formula, Annals Univ. of Craiova, Math. Comp. Sci. Ser., 35 (2008), 1-6.   Google Scholar

[15]

I. BârsanP. Braica and M. Fǎrcaş, About approximation of B-continuous functions of several variables by generalized boolean sum operators of Bernstein type on a simplex, Creat. Math. Inform., 20 (2011), 20-23.  doi: 10.37193/CMI.2011.01.03.  Google Scholar

[16]

B. Baxhaku and P. N. Agrawal, Degree of approximation for bivariate extension of Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators, Appl. Math. Comput., 306 (2017), 56-72.  doi: 10.1016/j.amc.2017.02.007.  Google Scholar

[17]

B. Baxhaku, P. N. Agrawal and R. Shukla, Bivariate positive linear operators constructed by means of $q$-Lagrange polynomials, J. Math. Anal. Appl., 491 (2020), 124337, 24 pp. doi: 10.1016/j.jmaa.2020.124337.  Google Scholar

[18]

Q. B. Cai, B.-Y. Lian and G. Zhou, Approximation properties of $\lambda$-Bernstein operators, J. Inequal. Appl., 2018 (2018), Paper No. 61, 11 pp. doi: 10.1186/s13660-018-1653-7.  Google Scholar

[19]

Q. B. Cai and G. Zhou, Blending type approximation by GBS operators of bivariate tensor product of $\lambda$-Bernstein-Kantorovich type, J. Inequal. Appl., 2018 (2018), Paper No. 268, 11 pp. doi: 10.1186/s13660-018-1862-0.  Google Scholar

[20]

Q. B. Cai and G. Zhou, On $(p, q)$-analogue of Kantorovich type Bernstein-Stancu-Schurer operators, Appl. Math. Comput., 276 (2016), 12-20.  doi: 10.1016/j.amc.2015.12.006.  Google Scholar

[21]

D. Cárdenas-Morales and V. Gupta, Two families of Bernstein-Durrmeyer type operators, Appl. Math. Comput., 248 (2014), 342-353.  doi: 10.1016/j.amc.2014.09.094.  Google Scholar

[22]

C. Cottin, Mixed K-functionals: A measure of smoothness for blending-type approximation, Math. Z., 204 (1990), 69-83.  doi: 10.1007/BF02570860.  Google Scholar

[23]

E. Dobrescu and I. Matei, The approximation by Bernstein type polynomials of bidimensional continuous functions, An. Univ. Timişoara Ser. Şti. Mat.-Fiz., 4 (1966), 85-90.   Google Scholar

[24]

O. Doğru and K. Kanat, On statistical approximation properties of the Kantorovich type Lupaş operators, Math. Comput. Modelling, 55 (2012), 1610-1621.  doi: 10.1016/j.mcm.2011.10.059.  Google Scholar

[25]

M. D. Farcas, About approximation of B-continuous and B-differentiable functions of three variables by GBS operators of Bernstein type, Creat. Math. Inform., 17 (2008), 20-27.   Google Scholar

[26]

A. D. Gadjiev and A. M. Ghorbanalizadeh, Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables, Appl. Math. Comput., 216 (2010), 890-901.  doi: 10.1016/j.amc.2010.01.099.  Google Scholar

[27]

N. K. GovilV. Gupta and D. Soybaş, Certain new class of Durrmeyer type operators, Appl. Math. Comput., 225 (2013), 195-203.  doi: 10.1016/j.amc.2013.09.030.  Google Scholar

[28]

V. Gupta and R. P. Agarwal, Convergence Estimates in Approximation Theory, Springer, Berlin, 2014. doi: 10.1007/978-3-319-02765-4.  Google Scholar

[29]

V. Gupta, T. M. Rassias, P. N. Agrawal and A. M. Acu, Recent Advances in Constructive Approximation Theory, Series: Springer Optimization and its Applications, Springer, Cham, 2018. doi: 10.1007/978-3-319-92165-5.  Google Scholar

[30]

M. Örkcü and O. Doğru, Weighted statistical approximation by Kantorovich type $q$-Szász-Mirakjan operators, Appl. Math. Comput., 217 (2011), 7913-7919.  doi: 10.1016/j.amc.2011.03.009.  Google Scholar

[31]

S. Rahman, M. Mursaleen and A. M. Acu, Approximation properties of $\lambda$-Bernstein-Kantorovich operators with shifted knots, Math. Methods Appl. Sci., (2019), 4042–4053. doi: 10.1002/mma.5632.  Google Scholar

[32]

V. I. Volkov, On the convergence of sequences of linear positive operators in the space of continuous functions of two variables, Dokl. Akad. Nauk. SSSR (N.S), 115 (1957), 17-19.   Google Scholar

show all references

References:
[1]

A. M. Acu, N. Manav and D. F. Sofonea, Approximation properties of $\lambda$-Kantorovich operators, J. Inequal. Appl., 202 (2018), Paper No. 202, 12 pp. doi: 10.1186/s13660-018-1795-7.  Google Scholar

[2]

P. N. AgrawalB. Baxhaku and R. Shukla, On q-analogue of a parametric generalization of Baskakov operators, Math. Methods Appl. Sci., 44 (2021), 5989-6004.  doi: 10.1002/mma.7163.  Google Scholar

[3]

R. P. Agarwal and V. Gupta, On $q$-analogue of a complex summation-integral type operators in compact disk, J. Inequal. Appl., 2012 (2012), Article number: 111. doi: 10.1186/1029-242X-2012-111.  Google Scholar

[4]

P. N. Agrawal and N. Ispir, Degree of approximation for bivariate Chlodowsky-Szász-Charlier type operators, Results Math., 69 (2016), 365-385.  doi: 10.1007/s00025-015-0495-6.  Google Scholar

[5]

P. N. AgrawalN. Ispir and A. Kajla, GBS operators of Lupaş-Durrmeyer type based on Pólya distribution, Results Math., 69 (2016), 397-418.  doi: 10.1007/s00025-015-0507-6.  Google Scholar

[6]

G. A. Anastassiou and S. G. Gal, Approximation Theory: Moduli of Continuity and Global Smoothness Preservation, Birkhäuser Boston, Inc., Boston, MA, 2000. doi: 10.1007/978-1-4612-1360-4.  Google Scholar

[7]

A. Aral and V. Gupta, On the Durrmeyer type modification of the $q$-Baskakov type operators, Nonlinear Anal., 72 (2010), 1171-1180.  doi: 10.1016/j.na.2009.07.052.  Google Scholar

[8]

C. BadeaI. BadeaC. Cottin and H. H. Gonska, Notes on degree of approximation of B-continuous and B-differentiable functions, Approx. Theory Appl., 4 (1988), 95-108.   Google Scholar

[9]

C. BadeaI. Badea and H. H. Gonska, A test function theorem and approximation by pseudopolynomials, Bull. Aust. Math. Soc., 34 (1986), 53-64.  doi: 10.1017/S0004972700004494.  Google Scholar

[10]

C. Badea and C. Cottin, Korovkin-type theorem for generalized boolean sum operators, In Colloq. Math. Soc. Jńos Bolyai, North-Holland, Amsterdam, 58 (1991), 51-67.   Google Scholar

[11]

D. Bărbosu, Kantorovich-Schurer bivariate operators, Miskolc Math. Notes, 5 (2004), 129-136.  doi: 10.18514/MMN.2004.71.  Google Scholar

[12]

D. BărbosuA.-M. Acu and C. V. Muraru, On certain GBS-Durrmeyer operators based on $q$-integers, Turk. J. Math., 41 (2017), 368-380.  doi: 10.3906/mat-1601-34.  Google Scholar

[13]

D. Bărbosu and C. V. Muraru, Approximating B-continuous functions using GBS operators of Bernstein-Schurer-Stancu type based on $q$-integers, Appl. Math. Comput., 259 (2015), 80-87.  doi: 10.1016/j.amc.2015.02.030.  Google Scholar

[14]

D. Bărbosu and O. T. Pop, A note on the GBS Bernstein's approximation formula, Annals Univ. of Craiova, Math. Comp. Sci. Ser., 35 (2008), 1-6.   Google Scholar

[15]

I. BârsanP. Braica and M. Fǎrcaş, About approximation of B-continuous functions of several variables by generalized boolean sum operators of Bernstein type on a simplex, Creat. Math. Inform., 20 (2011), 20-23.  doi: 10.37193/CMI.2011.01.03.  Google Scholar

[16]

B. Baxhaku and P. N. Agrawal, Degree of approximation for bivariate extension of Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators, Appl. Math. Comput., 306 (2017), 56-72.  doi: 10.1016/j.amc.2017.02.007.  Google Scholar

[17]

B. Baxhaku, P. N. Agrawal and R. Shukla, Bivariate positive linear operators constructed by means of $q$-Lagrange polynomials, J. Math. Anal. Appl., 491 (2020), 124337, 24 pp. doi: 10.1016/j.jmaa.2020.124337.  Google Scholar

[18]

Q. B. Cai, B.-Y. Lian and G. Zhou, Approximation properties of $\lambda$-Bernstein operators, J. Inequal. Appl., 2018 (2018), Paper No. 61, 11 pp. doi: 10.1186/s13660-018-1653-7.  Google Scholar

[19]

Q. B. Cai and G. Zhou, Blending type approximation by GBS operators of bivariate tensor product of $\lambda$-Bernstein-Kantorovich type, J. Inequal. Appl., 2018 (2018), Paper No. 268, 11 pp. doi: 10.1186/s13660-018-1862-0.  Google Scholar

[20]

Q. B. Cai and G. Zhou, On $(p, q)$-analogue of Kantorovich type Bernstein-Stancu-Schurer operators, Appl. Math. Comput., 276 (2016), 12-20.  doi: 10.1016/j.amc.2015.12.006.  Google Scholar

[21]

D. Cárdenas-Morales and V. Gupta, Two families of Bernstein-Durrmeyer type operators, Appl. Math. Comput., 248 (2014), 342-353.  doi: 10.1016/j.amc.2014.09.094.  Google Scholar

[22]

C. Cottin, Mixed K-functionals: A measure of smoothness for blending-type approximation, Math. Z., 204 (1990), 69-83.  doi: 10.1007/BF02570860.  Google Scholar

[23]

E. Dobrescu and I. Matei, The approximation by Bernstein type polynomials of bidimensional continuous functions, An. Univ. Timişoara Ser. Şti. Mat.-Fiz., 4 (1966), 85-90.   Google Scholar

[24]

O. Doğru and K. Kanat, On statistical approximation properties of the Kantorovich type Lupaş operators, Math. Comput. Modelling, 55 (2012), 1610-1621.  doi: 10.1016/j.mcm.2011.10.059.  Google Scholar

[25]

M. D. Farcas, About approximation of B-continuous and B-differentiable functions of three variables by GBS operators of Bernstein type, Creat. Math. Inform., 17 (2008), 20-27.   Google Scholar

[26]

A. D. Gadjiev and A. M. Ghorbanalizadeh, Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables, Appl. Math. Comput., 216 (2010), 890-901.  doi: 10.1016/j.amc.2010.01.099.  Google Scholar

[27]

N. K. GovilV. Gupta and D. Soybaş, Certain new class of Durrmeyer type operators, Appl. Math. Comput., 225 (2013), 195-203.  doi: 10.1016/j.amc.2013.09.030.  Google Scholar

[28]

V. Gupta and R. P. Agarwal, Convergence Estimates in Approximation Theory, Springer, Berlin, 2014. doi: 10.1007/978-3-319-02765-4.  Google Scholar

[29]

V. Gupta, T. M. Rassias, P. N. Agrawal and A. M. Acu, Recent Advances in Constructive Approximation Theory, Series: Springer Optimization and its Applications, Springer, Cham, 2018. doi: 10.1007/978-3-319-92165-5.  Google Scholar

[30]

M. Örkcü and O. Doğru, Weighted statistical approximation by Kantorovich type $q$-Szász-Mirakjan operators, Appl. Math. Comput., 217 (2011), 7913-7919.  doi: 10.1016/j.amc.2011.03.009.  Google Scholar

[31]

S. Rahman, M. Mursaleen and A. M. Acu, Approximation properties of $\lambda$-Bernstein-Kantorovich operators with shifted knots, Math. Methods Appl. Sci., (2019), 4042–4053. doi: 10.1002/mma.5632.  Google Scholar

[32]

V. I. Volkov, On the convergence of sequences of linear positive operators in the space of continuous functions of two variables, Dokl. Akad. Nauk. SSSR (N.S), 115 (1957), 17-19.   Google Scholar

Figure 1.  The convergence of operators $ K_{m_{1}, m_{2}, \lambda_{1}, \lambda_{2}}^{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}}(f(t, s);x, y) $ to the function $ f(x, y). $
Figure 2.  The convergence of operators $ T_{m_{1}, m_{2}, \lambda_{1}, \lambda_{2}}^{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}}(.;x, y) $ to the function $ f(x, y). $
Table 1.  Error of approximation for operators $ K_{m_{1}, m_{2}, \lambda_{1}, \lambda_{2}}^{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}}(f(t, s);x, y) $ to the function $ f(x, y). $
(x, y) $ |K_{5, 5, \lambda_{1}, \lambda_{2}}^{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}}(f)-f(x, y)| $ $ |K_{20, 20, \lambda_{1}, \lambda_{2}}^{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}}(f)-f(x, y)| $ $ |K_{30, 30, \lambda_{1}, \lambda_{2}}^{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}}(f)-f(x, y)| $
(0, 0.1) 0.0014 0.000046 0.0000017
(0, 0.2) 0.0023 0.000113 0.0000469
(0, 0.4) 0.0042 0.000328 0.0001480
(0, 0.6) 0.0065 0.000649 0.0003044
(0.3, 0.2) 0.0104 0.002238 0.0014384
(0.4, 0.6) 0.0574 0.005843 0.0040092
(0.7, 0.85) 0.0044 0.015745 0.0010459
(0.9, 0.9) 0.0041 0.049901 0.0343900
(x, y) $ |K_{5, 5, \lambda_{1}, \lambda_{2}}^{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}}(f)-f(x, y)| $ $ |K_{20, 20, \lambda_{1}, \lambda_{2}}^{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}}(f)-f(x, y)| $ $ |K_{30, 30, \lambda_{1}, \lambda_{2}}^{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}}(f)-f(x, y)| $
(0, 0.1) 0.0014 0.000046 0.0000017
(0, 0.2) 0.0023 0.000113 0.0000469
(0, 0.4) 0.0042 0.000328 0.0001480
(0, 0.6) 0.0065 0.000649 0.0003044
(0.3, 0.2) 0.0104 0.002238 0.0014384
(0.4, 0.6) 0.0574 0.005843 0.0040092
(0.7, 0.85) 0.0044 0.015745 0.0010459
(0.9, 0.9) 0.0041 0.049901 0.0343900
Table 2.  Error of approximation for operators $ T_{m_{1}, m_{2}, \lambda_{1}, \lambda_{2}}^{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}}(.;x, y) $ to the function $ f(x, y). $
(x, y) $ |T_{5, 5, \lambda_{1}, \lambda_{2}}^{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}}-f(x, y)| $ $ |T_{20, 20, \lambda_{1}, \lambda_{2}}^{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}}-f(x, y)| $ $ |T_{30, 30, \lambda_{1}, \lambda_{2}}^{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}}-f(x, y)| $
(0, 0.1) 0.000347569 0.0000078 0.00000246
(0, 0.2) 0.000201932 0.0000009 0.00000039
(0, 0.4) 0.000862538 0.0000596 0.00002016
(0, 0.6) 0.002918733 0.0001733 0.00005868
(0.3, 0.2) 0.002621451 0.0003985 0.00012684
(0.4, 0.6) 0.012447883 0.0012800 0.00000967
(0.7, 0.85) 0.020700332 0.0083391 0.00698802
(0.9, 0.9) 0.081198311 0.0232949 0.01644060
(x, y) $ |T_{5, 5, \lambda_{1}, \lambda_{2}}^{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}}-f(x, y)| $ $ |T_{20, 20, \lambda_{1}, \lambda_{2}}^{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}}-f(x, y)| $ $ |T_{30, 30, \lambda_{1}, \lambda_{2}}^{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}}-f(x, y)| $
(0, 0.1) 0.000347569 0.0000078 0.00000246
(0, 0.2) 0.000201932 0.0000009 0.00000039
(0, 0.4) 0.000862538 0.0000596 0.00002016
(0, 0.6) 0.002918733 0.0001733 0.00005868
(0.3, 0.2) 0.002621451 0.0003985 0.00012684
(0.4, 0.6) 0.012447883 0.0012800 0.00000967
(0.7, 0.85) 0.020700332 0.0083391 0.00698802
(0.9, 0.9) 0.081198311 0.0232949 0.01644060
[1]

Uğur Kadak, Faruk Özger. A numerical comparative study of generalized Bernstein-Kantorovich operators. Mathematical Foundations of Computing, 2021, 4 (4) : 311-332. doi: 10.3934/mfc.2021021

[2]

Ana-Maria Acu, Laura Hodis, Ioan Rasa. Multivariate weighted kantorovich operators. Mathematical Foundations of Computing, 2020, 3 (2) : 117-124. doi: 10.3934/mfc.2020009

[3]

Ling-Xiong Han, Wen-Hui Li, Feng Qi. Approximation by multivariate Baskakov–Kantorovich operators in Orlicz spaces. Electronic Research Archive, 2020, 28 (2) : 721-738. doi: 10.3934/era.2020037

[4]

Lucian Coroianu, Sorin G. Gal. New approximation properties of the Bernstein max-min operators and Bernstein max-product operators. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021034

[5]

Purshottam Narain Agrawal, Şule Yüksel Güngör, Abhishek Kumar. Better degree of approximation by modified Bernstein-Durrmeyer type operators. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021024

[6]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[7]

Harun Karsli. On approximation to discrete q-derivatives of functions via q-Bernstein-Schurer operators. Mathematical Foundations of Computing, 2021, 4 (1) : 15-30. doi: 10.3934/mfc.2020023

[8]

Lucian Coroianu, Danilo Costarelli, Sorin G. Gal, Gianluca Vinti. Approximation by multivariate max-product Kantorovich-type operators and learning rates of least-squares regularized regression. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4213-4225. doi: 10.3934/cpaa.2020189

[9]

Jean Louis Woukeng. $\sum $-convergence and reiterated homogenization of nonlinear parabolic operators. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1753-1789. doi: 10.3934/cpaa.2010.9.1753

[10]

Pablo Álvarez-Caudevilla, V. A. Galaktionov. Blow-up scaling and global behaviour of solutions of the bi-Laplace equation via pencil operators. Communications on Pure & Applied Analysis, 2016, 15 (1) : 261-286. doi: 10.3934/cpaa.2016.15.261

[11]

Kenji Nakanishi. Modified wave operators for the Hartree equation with data, image and convergence in the same space. Communications on Pure & Applied Analysis, 2002, 1 (2) : 237-252. doi: 10.3934/cpaa.2002.1.237

[12]

Purshottam N. Agrawal, Thakur Ashok K. Sinha, Avinash Sharma. Convergence of derivative of Szász type operators involving Charlier polynomials. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021016

[13]

Antonio G. García. Sampling in $ \Lambda $-shift-invariant subspaces of Hilbert-Schmidt operators on $ L^2(\mathbb{R}^d) $. Mathematical Foundations of Computing, 2021, 4 (4) : 281-297. doi: 10.3934/mfc.2021019

[14]

Mohd Qasim, Mohd Shanawaz Mansoori, Asif Khan, Zaheer Abbas, Mohammad Mursaleen. Convergence of modified Szász-Mirakyan-Durrmeyer operators depending on certain parameters. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021027

[15]

Xingwang Xu, Paul C. Yang. Positivity of Paneitz operators. Discrete & Continuous Dynamical Systems, 2001, 7 (2) : 329-342. doi: 10.3934/dcds.2001.7.329

[16]

Dag Lukkassen, Annette Meidell, Peter Wall. Multiscale homogenization of monotone operators. Discrete & Continuous Dynamical Systems, 2008, 22 (3) : 711-727. doi: 10.3934/dcds.2008.22.711

[17]

Augusto VisintiN. On the variational representation of monotone operators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046

[18]

Vincenzo Recupero. Hysteresis operators in metric spaces. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 773-792. doi: 10.3934/dcdss.2015.8.773

[19]

Ana-Maria Acu, Madalina Dancs, Voichiţa Adriana Radu. Representations for the inverses of certain operators. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4097-4109. doi: 10.3934/cpaa.2020182

[20]

Gernot Holler, Karl Kunisch. Learning nonlocal regularization operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021003

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]