In this paper we deal with bivariate extension of Jain operators. Using elementary method, we show that these opearators are non-increasing in $ n $ when the attached function is convex. Moreover, we demonstrate that these operators preserve the properties of modulus of continuity. Finally, we present a Voronovskaja type theorem for the sequence of bivariate Jain operators.
Citation: |
[1] |
U. Abel and O. Agratini, Asymptotic behaviour of Jain operators, Numer Algor., 71 (2016), 553-565.
doi: 10.1007/s11075-015-0009-3.![]() ![]() ![]() |
[2] |
O. Agratini, Approximation properties of a class of linear operators, Math. Meth. Appl. Sci., 36 (2013), 2353-2358.
doi: 10.1002/mma.2758.![]() ![]() ![]() |
[3] |
O. Agratini, A stop over Jain operators and their generalizations, An. Univ. Vest Timiş. Ser. Mat.-Inform., 56 (2018), 28-42.
doi: 10.2478/awutm-2018-0014.![]() ![]() ![]() |
[4] |
C. Bardaro and I. Mantellini, On Pointwise approximation properties of multivariate Semi-discrete sampling type operators, Results Math., 72 (2017), 1449-1472.
doi: 10.1007/s00025-017-0667-7.![]() ![]() ![]() |
[5] |
F. Cao, C. Ding and Z. Xu, On multivariate Baskakov operator, J. Math. Anal. Appl., 307 (2005), 274-291.
doi: 10.1016/j.jmaa.2004.10.061.![]() ![]() ![]() |
[6] |
N. Çetin and G. Başcanbaz-Tunca, Approximation by Jain-Schurer operators, Facta Univ. Ser. Math. Inform., 35 (2020), 1343-1356.
doi: 10.22190/fumi2005343c.![]() ![]() ![]() |
[7] |
E. W. Cheney and A. Sharma, Bernstein power series, Can. J. Math., 16 (1964), 241-252.
doi: 10.4153/CJM-1964-023-1.![]() ![]() ![]() |
[8] |
E. Deniz, Quantitative estimates for Jain-Kantorovich operators, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 65 (2016), 121-132.
doi: 10.1501/Commua1_0000000764.![]() ![]() ![]() |
[9] |
M. Dhamija and N. Deo, Jain–Durrmeyer operators associated with the inverse Pólya–Eggenberger distribution, Appl. Math. Comput., 286 (2016), 15-22.
doi: 10.1016/j.amc.2016.03.015.![]() ![]() ![]() |
[10] |
O. Doğru, R. N. Mohapatra and M. Örkcü, Approximation properties of genaralized Jain operators, Filomat, 30 (2016), 2359-2366.
doi: 10.2298/FIL1609359D.![]() ![]() ![]() |
[11] |
A. Farcaş, An asymptotic formula for Jain's operators, Stud. Univ. Babeş-Bolyai Math., 57 (2012), 511–517.
![]() ![]() |
[12] |
A. Farcaş, An approximation property of the generalized Jain's operators of two variables, Math. Sci. Appl. E-Notes, 1 (2013), 158-164.
![]() |
[13] |
V. Gupta, R. P. Agarwal and D. K. Verma, Approximation for a new sequence of summation-integral type operators, Adv. Math. Sci. Appl., 23 (2013), 35-42.
![]() ![]() |
[14] |
V. Gupta and G. C. Greubel, Moment estimations of new Szász–Mirakyan–Durrmeyer operators, Appl. Math. Comput., 271 (2015), 540-547.
doi: 10.1016/j.amc.2015.09.037.![]() ![]() ![]() |
[15] |
G. C. Jain, Approximation of functions by a new class of linear operators, J. Austral. Math. Soc., 13 (1972), 271-276.
doi: 10.1017/S1446788700013689.![]() ![]() ![]() |
[16] |
Z. Li, Bernstein polynomials and modulus of continuity, J. Approx. Theory, 102 (2000), 171-174.
doi: 10.1006/jath.1999.3374.![]() ![]() ![]() |
[17] |
G. M. Mirakjan, Approximation of continuous functions with the aid of polynomials, Dokl. Akad. Nauk SSSR, 31 (1941), 201-205.
![]() |
[18] |
A. Olgun, Some properties of the multivariate Szász operators, C. R. Acad. Bulg. Sci., 65 (2012), 139-146.
![]() ![]() |
[19] |
A. Olgun, F. Taşdelen and A. Erençin, A generalization of Jain's operators, Appl. Math. Comput., 266 (2015), 6-11.
doi: 10.1016/j.amc.2015.05.060.![]() ![]() ![]() |
[20] |
M. A. Özarslan, Approximation properties of Jain-Stancu operators, Filomat, 30 (2016), 1081-1088.
doi: 10.2298/FIL1604081O.![]() ![]() ![]() |
[21] |
L. Rempulska and M. Skorupka, On Szasz-Mirakyan operators of functions of two variables, Le Matematiche, 53 (1998), 51-60.
![]() ![]() |
[22] |
D. D. Stancu and E. I. Stoica, On the use Abel-Jensen type combinatorial formulas for construction and investigation of some algebraic polynomial operators of approximation, Stud. Univ. Babeş -Bolyai Math., 54 (2009), 167–182.
![]() ![]() |
[23] |
O. Szász, Generalization of S. Bernstein's polynomials to the infinite interval, J. Res. Natl. Bur. Stand., 45 (1950), 239-245.
doi: 10.6028/jres.045.024.![]() ![]() ![]() |
[24] |
S. Tarabie, On Jain-Beta linear operators, Appl. Math. Inf. Sci., 6 (2012), 213-216.
![]() ![]() |
[25] |
S. Umar and Q. Razi, Approximation of function by a generalized Szász operators, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 34 (1985), 45-52.
doi: 10.1501/Commua1_0000000240.![]() ![]() |