doi: 10.3934/mfc.2021030
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

On Rogosinski-type approximation processes in Banach space using the framework of the cosine operator function

1. 

Tallinn University, Narva Str. 25, 10120 Tallinn, Estonia

2. 

Estonian Maritime Academy, Tallinn Univ. of Technology, Kopli 101, 11712 Tallinn, Estonia

* Corresponding author: A. Kivinukk

Received  June 2021 Revised  September 2021 Early access November 2021

Fund Project: Research supported partially by the EU, European Reg. Develop. Fund ASTRA project for 2016-2022 of Estonian Doctoral School in Mathematics and Statistics; Tallinn University TLU TEE

In this article, we investigate the approximation properties of general cosine-type operators, especially Rogosinski-type operators, in Banach space when there is a cosine operator function. We apply our approach to both trigonometric Rogosinski operators and Shannon sampling operators. Moreover, for some operators, we derived orders of approximation that include numerical estimates of the constants contained in it. We announced a new direction for approximation issues in the Mellin framework.

Citation: Andi Kivinukk, Anna Saksa. On Rogosinski-type approximation processes in Banach space using the framework of the cosine operator function. Mathematical Foundations of Computing, doi: 10.3934/mfc.2021030
References:
[1]

N. I. Akhiezer, Lectures in the Theory of Approximation, Second revised and enlarged edition, Izdat. "Nauka", Moscow, 1965 (in Russian).  Google Scholar

[2]

M. V. Babushkin and V. V. Zhuk, On approximation of periodical functions by generalized Rogosinski sums (in Russian), Transactions of Tula State University. Natural Sciences, 2 (2014), 5-29.   Google Scholar

[3]

C. BardaroP. L. Butzer and I. Mantellini, The foundations of fractional calculus in the Mellin transform setting with applications, J. Fourier Anal. Appl., 21 (2015), 961-1017.  doi: 10.1007/s00041-015-9392-3.  Google Scholar

[4]

R. B. Blackman and J. W. Tukey, The Measurement of Power Spectra, Dover Publications, Inc., New York 1959.  Google Scholar

[5]

P. L. Butzer and A. Gessinger, Ergodic theorems for semigroups and cosine operator functions at zero and infinity with rates; applications to partial differential equations. A survey,, Contemp. Math., 190 (1995), 67-94.  doi: 10.1090/conm/190/02293.  Google Scholar

[6]

P. L. Butzer and S. Jansche, A direct approach to the Mellin transform, J. Fourier Anal. Appl., 3 (1997), 325-376.  doi: 10.1007/BF02649101.  Google Scholar

[7]

P. L. Butzer and S. Jansche, The exponential sampling theorem of signal analysis, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 99-122.   Google Scholar

[8]

P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Birkhäuser Verlag, Basel-Stuttgart, 1971. Google Scholar

[9]

P. L. Butzer and R. L. Stens, Chebyshev transform methods in the theory of best algebraic approximation, Abh. Math. Sem. Univ. Hamburg, 45 (1976), 165-190.  doi: 10.1007/BF02992913.  Google Scholar

[10]

P. L. ButzerW. Splettstösser and R. L. Stens, The sampling theorems and linear prediction in signal analysis, Jahresber. Deutsch. Math-Verein, 90 (1988), 1-70.   Google Scholar

[11]

R. A. DeVore and G. G. Lorentz, Constructive Approximation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 303. Springer-Verlag, Berlin, 1993.  Google Scholar

[12]

G. Heinzel, A. Rüdiger and R. Schilling, Spectrum and Spectral Density Estimation by the Discrete Fourier Transform (DFT), Including a Comprehensive List of Window Functions and Some New Flat-Top Windows, (Technical report), Max Planck Institute (MPI) für Gravitationsphysik / Laser Interferometry and Gravitational Wave Astronomy, 2002. Google Scholar

[13] J. R. Higgins, Sampling Theory in Fourier and Signal Analysis, Clarendon Press, Oxford, 1996.   Google Scholar
[14] J. R. Higgins, Completeness and Basis Properties of Sets of Special Functions, Cambridge: Cambridge University Press, 1977.  doi: 10.1017/CBO9780511566189.008.  Google Scholar
[15] L. V. Kantorovich and G. P. Akilov, Functional Analysis, 2$^{nd}$ edition, Pergamon Press, Oxford-Elmsford, N.Y., 1982.   Google Scholar
[16]

A. Kivinukk, On the measure of approximation for some linear means of trigonometric Fourier series, J. Approx. Theory, 88 (1997), 193-208.  doi: 10.1006/jath.1996.3022.  Google Scholar

[17]

A. Kivinukk, Approximation of continuous functions by Rogosinski-type sampling series, In Modern Sampling Theory: Mathematics and Applications, Birkhäuser Verlag, Boston, (2001), 229–244.  Google Scholar

[18]

A. KivinukkA. Saksa and M. Zeltser, On a cosine operator function framework of approximation processes in Banach space, Filomat, 33 (2019), 4213-4228.  doi: 10.2298/FIL1913213K.  Google Scholar

[19]

A. Kivinukk and A. Šeletski, On the steklov averages in operator cosine function framework, Filomat, 00 (2021), 00–00 (accepted for publication). Google Scholar

[20]

A. Kivinukk and G. Tamberg, On sampling series based on some combinations of sinc functions, Proc. Estonian Acad. Sci. Phys. Math., 51 (2002), 203-220.  doi: 10.3176/phys.math.2002.4.01.  Google Scholar

[21]

A. Kivinukk and G. Tamberg, On sampling operators defined by the Hann window and some of their extensions, Sampl. Theory Signal Image Process., 2 (2003), 235-257.  doi: 10.1007/BF03549397.  Google Scholar

[22]

A. Kivinukk and G. Tamberg, Blackman-type windows for sampling series, J. Comput. Anal. Appl., 7 (2005), 361-371.   Google Scholar

[23]

A. Kivinukk and G. Tamberg, On Blackman-Harris windows for Shannon sampling series, Sampl. Theory Signal Image Process., 6, (2007), 87–108. doi: 10.1007/BF03549465.  Google Scholar

[24]

D. Lutz, Strongly continuous operator cosine functions, In Functional Analysis. Proc., Dubrovnik 1981, Lecture Notes in Math., (eds. D. Butković, H. Kaljević and S. Kurepa), Lect Notes in Math. 948 (1982), 73–97.  Google Scholar

[25]

D. Popa and I. Raça, Steklov averages as positive linear operators, Filomat, 30 (2016), 1195-1201.  doi: 10.2298/FIL1605195P.  Google Scholar

[26]

W. W. Rogosinski, Reihensummierung durch Abschnittskoppelungen, Math. Z., 25 (1926), 132-149.  doi: 10.1007/BF01283830.  Google Scholar

[27]

M. Sova, Cosine operator functions, Rozprawy Mat., 49 (1966), 47pp.  Google Scholar

[28]

S. B. Stechkin, Summation methods of S. N. Bernstein and W. Rogosinski, In G. H. Hardy, Divergent Series, Moscow, (Russian Edition), (1951), 479–492. Google Scholar

[29]

A. I. Stepanets, Uniform Approximations by Trigonometric Polynomials, De Gruyter, 2001 (Russian original: Naukova Dumka, Kiev, 1981).  Google Scholar

[30]

A. F. Timan, Theory of Approximation of Functions of a Real Variable, MacMillan, New York, 1963.  Google Scholar

[31]

O. L. Vinogradov and V. V. Zhuk, Estimates for functionals with a known finite set of moments in term of moduli of continuity, and behavior of constants in the Jackson-type inequalities,, St. Petersburg Math. J., 24 (2013), 691-721.  doi: 10.1090/S1061-0022-2013-01261-1.  Google Scholar

[32]

V. V. Zhuk, Inequalities of the type of the generalized Jackson theorem for the best approximations,, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 404 (2012), 135-156.  doi: 10.1007/s10958-013-1435-1.  Google Scholar

[33]

V. V. Zhuk and G. I. Natanson, Trigonometric Fourier Series and Elements of Approximation Theory, Leningrad. Univ., Leningrad, 1983 [in Russian].  Google Scholar

[34] D. Zwillinger and V. Moll (eds.), Grandshteyn and Ryzhik's Table of Integrals, Series and Products, Eighth edition. Academic Press, 2014.   Google Scholar

show all references

References:
[1]

N. I. Akhiezer, Lectures in the Theory of Approximation, Second revised and enlarged edition, Izdat. "Nauka", Moscow, 1965 (in Russian).  Google Scholar

[2]

M. V. Babushkin and V. V. Zhuk, On approximation of periodical functions by generalized Rogosinski sums (in Russian), Transactions of Tula State University. Natural Sciences, 2 (2014), 5-29.   Google Scholar

[3]

C. BardaroP. L. Butzer and I. Mantellini, The foundations of fractional calculus in the Mellin transform setting with applications, J. Fourier Anal. Appl., 21 (2015), 961-1017.  doi: 10.1007/s00041-015-9392-3.  Google Scholar

[4]

R. B. Blackman and J. W. Tukey, The Measurement of Power Spectra, Dover Publications, Inc., New York 1959.  Google Scholar

[5]

P. L. Butzer and A. Gessinger, Ergodic theorems for semigroups and cosine operator functions at zero and infinity with rates; applications to partial differential equations. A survey,, Contemp. Math., 190 (1995), 67-94.  doi: 10.1090/conm/190/02293.  Google Scholar

[6]

P. L. Butzer and S. Jansche, A direct approach to the Mellin transform, J. Fourier Anal. Appl., 3 (1997), 325-376.  doi: 10.1007/BF02649101.  Google Scholar

[7]

P. L. Butzer and S. Jansche, The exponential sampling theorem of signal analysis, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 99-122.   Google Scholar

[8]

P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Birkhäuser Verlag, Basel-Stuttgart, 1971. Google Scholar

[9]

P. L. Butzer and R. L. Stens, Chebyshev transform methods in the theory of best algebraic approximation, Abh. Math. Sem. Univ. Hamburg, 45 (1976), 165-190.  doi: 10.1007/BF02992913.  Google Scholar

[10]

P. L. ButzerW. Splettstösser and R. L. Stens, The sampling theorems and linear prediction in signal analysis, Jahresber. Deutsch. Math-Verein, 90 (1988), 1-70.   Google Scholar

[11]

R. A. DeVore and G. G. Lorentz, Constructive Approximation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 303. Springer-Verlag, Berlin, 1993.  Google Scholar

[12]

G. Heinzel, A. Rüdiger and R. Schilling, Spectrum and Spectral Density Estimation by the Discrete Fourier Transform (DFT), Including a Comprehensive List of Window Functions and Some New Flat-Top Windows, (Technical report), Max Planck Institute (MPI) für Gravitationsphysik / Laser Interferometry and Gravitational Wave Astronomy, 2002. Google Scholar

[13] J. R. Higgins, Sampling Theory in Fourier and Signal Analysis, Clarendon Press, Oxford, 1996.   Google Scholar
[14] J. R. Higgins, Completeness and Basis Properties of Sets of Special Functions, Cambridge: Cambridge University Press, 1977.  doi: 10.1017/CBO9780511566189.008.  Google Scholar
[15] L. V. Kantorovich and G. P. Akilov, Functional Analysis, 2$^{nd}$ edition, Pergamon Press, Oxford-Elmsford, N.Y., 1982.   Google Scholar
[16]

A. Kivinukk, On the measure of approximation for some linear means of trigonometric Fourier series, J. Approx. Theory, 88 (1997), 193-208.  doi: 10.1006/jath.1996.3022.  Google Scholar

[17]

A. Kivinukk, Approximation of continuous functions by Rogosinski-type sampling series, In Modern Sampling Theory: Mathematics and Applications, Birkhäuser Verlag, Boston, (2001), 229–244.  Google Scholar

[18]

A. KivinukkA. Saksa and M. Zeltser, On a cosine operator function framework of approximation processes in Banach space, Filomat, 33 (2019), 4213-4228.  doi: 10.2298/FIL1913213K.  Google Scholar

[19]

A. Kivinukk and A. Šeletski, On the steklov averages in operator cosine function framework, Filomat, 00 (2021), 00–00 (accepted for publication). Google Scholar

[20]

A. Kivinukk and G. Tamberg, On sampling series based on some combinations of sinc functions, Proc. Estonian Acad. Sci. Phys. Math., 51 (2002), 203-220.  doi: 10.3176/phys.math.2002.4.01.  Google Scholar

[21]

A. Kivinukk and G. Tamberg, On sampling operators defined by the Hann window and some of their extensions, Sampl. Theory Signal Image Process., 2 (2003), 235-257.  doi: 10.1007/BF03549397.  Google Scholar

[22]

A. Kivinukk and G. Tamberg, Blackman-type windows for sampling series, J. Comput. Anal. Appl., 7 (2005), 361-371.   Google Scholar

[23]

A. Kivinukk and G. Tamberg, On Blackman-Harris windows for Shannon sampling series, Sampl. Theory Signal Image Process., 6, (2007), 87–108. doi: 10.1007/BF03549465.  Google Scholar

[24]

D. Lutz, Strongly continuous operator cosine functions, In Functional Analysis. Proc., Dubrovnik 1981, Lecture Notes in Math., (eds. D. Butković, H. Kaljević and S. Kurepa), Lect Notes in Math. 948 (1982), 73–97.  Google Scholar

[25]

D. Popa and I. Raça, Steklov averages as positive linear operators, Filomat, 30 (2016), 1195-1201.  doi: 10.2298/FIL1605195P.  Google Scholar

[26]

W. W. Rogosinski, Reihensummierung durch Abschnittskoppelungen, Math. Z., 25 (1926), 132-149.  doi: 10.1007/BF01283830.  Google Scholar

[27]

M. Sova, Cosine operator functions, Rozprawy Mat., 49 (1966), 47pp.  Google Scholar

[28]

S. B. Stechkin, Summation methods of S. N. Bernstein and W. Rogosinski, In G. H. Hardy, Divergent Series, Moscow, (Russian Edition), (1951), 479–492. Google Scholar

[29]

A. I. Stepanets, Uniform Approximations by Trigonometric Polynomials, De Gruyter, 2001 (Russian original: Naukova Dumka, Kiev, 1981).  Google Scholar

[30]

A. F. Timan, Theory of Approximation of Functions of a Real Variable, MacMillan, New York, 1963.  Google Scholar

[31]

O. L. Vinogradov and V. V. Zhuk, Estimates for functionals with a known finite set of moments in term of moduli of continuity, and behavior of constants in the Jackson-type inequalities,, St. Petersburg Math. J., 24 (2013), 691-721.  doi: 10.1090/S1061-0022-2013-01261-1.  Google Scholar

[32]

V. V. Zhuk, Inequalities of the type of the generalized Jackson theorem for the best approximations,, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 404 (2012), 135-156.  doi: 10.1007/s10958-013-1435-1.  Google Scholar

[33]

V. V. Zhuk and G. I. Natanson, Trigonometric Fourier Series and Elements of Approximation Theory, Leningrad. Univ., Leningrad, 1983 [in Russian].  Google Scholar

[34] D. Zwillinger and V. Moll (eds.), Grandshteyn and Ryzhik's Table of Integrals, Series and Products, Eighth edition. Academic Press, 2014.   Google Scholar
[1]

Purshottam Narain Agrawal, Şule Yüksel Güngör, Abhishek Kumar. Better degree of approximation by modified Bernstein-Durrmeyer type operators. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021024

[2]

H. N. Mhaskar, T. Poggio. Function approximation by deep networks. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4085-4095. doi: 10.3934/cpaa.2020181

[3]

Nikolai Dokuchaev. On strong causal binomial approximation for stochastic processes. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1549-1562. doi: 10.3934/dcdsb.2014.19.1549

[4]

Eduardo Lara, Rodolfo Rodríguez, Pablo Venegas. Spectral approximation of the curl operator in multiply connected domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 235-253. doi: 10.3934/dcdss.2016.9.235

[5]

Stefan Klus, Péter Koltai, Christof Schütte. On the numerical approximation of the Perron-Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (1) : 51-79. doi: 10.3934/jcd.2016003

[6]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 3043-3054. doi: 10.3934/dcdss.2020463

[7]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[8]

Saisai Shi, Bo Tan, Qinglong Zhou. Best approximation of orbits in iterated function systems. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4085-4104. doi: 10.3934/dcds.2021029

[9]

Wilfried Grecksch, Hannelore Lisei. Linear approximation of nonlinear Schrödinger equations driven by cylindrical Wiener processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3095-3114. doi: 10.3934/dcdsb.2016089

[10]

Yu A. Kutoyants. On approximation of BSDE and multi-step MLE-processes. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 4-. doi: 10.1186/s41546-016-0005-0

[11]

Christoph Bandt, Helena PeÑa. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198

[12]

Zhi-Min Chen. Straightforward approximation of the translating and pulsating free surface Green function. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2767-2783. doi: 10.3934/dcdsb.2014.19.2767

[13]

Giovanni Colombo, Thuy T. T. Le. Higher order discrete controllability and the approximation of the minimum time function. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4293-4322. doi: 10.3934/dcds.2015.35.4293

[14]

Ralf Banisch, Carsten Hartmann. A sparse Markov chain approximation of LQ-type stochastic control problems. Mathematical Control & Related Fields, 2016, 6 (3) : 363-389. doi: 10.3934/mcrf.2016007

[15]

Marvin S. Müller. Approximation of the interface condition for stochastic Stefan-type problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4317-4339. doi: 10.3934/dcdsb.2019121

[16]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[17]

Frank Neubrander, Koray Özer, Lee Windsperger. On subdiagonal rational Padé approximations and the Brenner-Thomée approximation theorem for operator semigroups. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3565-3579. doi: 10.3934/dcdss.2020238

[18]

Stefan Klus, Christof Schütte. Towards tensor-based methods for the numerical approximation of the Perron--Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (2) : 139-161. doi: 10.3934/jcd.2016007

[19]

Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a D-gap function for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 977-987. doi: 10.3934/jimo.2014.10.977

[20]

Z.Y. Wu, H.W.J. Lee, F.S. Bai, L.S. Zhang. Quadratic smoothing approximation to $l_1$ exact penalty function in global optimization. Journal of Industrial & Management Optimization, 2005, 1 (4) : 533-547. doi: 10.3934/jimo.2005.1.533

 Impact Factor: 

Metrics

  • PDF downloads (60)
  • HTML views (42)
  • Cited by (0)

Other articles
by authors

[Back to Top]