doi: 10.3934/mfc.2021032
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Korovkin-type approximation of set-valued and vector-valued functions

Department of Mathematics and Physics "E. De Giorgi", University of Salento, Campus Ecotekne, 73100 Lecce, Italy

Received  August 2021 Revised  October 2021 Early access November 2021

Fund Project: Work performed under the auspices of G.N.A.M.P.A. (I.N.d.A.M.) and the UMI Group TAA "Approximation Theory and Applications"

We establish some general Korovkin-type results in cones of set-valued functions and in spaces of vector-valued functions. These results constitute a meaningful extension of the preceding ones.

Citation: Michele Campiti. Korovkin-type approximation of set-valued and vector-valued functions. Mathematical Foundations of Computing, doi: 10.3934/mfc.2021032
References:
[1]

F. Altomare and M. Campiti, Korovkin-Type Approximation Theory and its Applications, De Gruyter Studies in Mathematics, 17, Berlin-Heidelberg-New York, 1994. doi: 10.1515/9783110884586.  Google Scholar

[2]

F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Rașa, Markov Operators, Positive Semigroups and Approximation Processes, , De Gruyter Studies in Mathematics, 61, Berlin-Munich-Boston, 2014. doi: 10.1515/9783110366976.  Google Scholar

[3]

M. Campiti, A Korovkin-type theorem for set-valued Hausdorff continuous functions, Matematiche (Catania), 42 (1987), 29–35.  Google Scholar

[4]

M. Campiti, Approximation of continuous set-valued functions in Fréchet spaces I, Anal. Numér. Théor. Approx., 20 (1991), 15–23.  Google Scholar

[5]

M. Campiti, Approximation of continuous set-valued functions in Fréchet spaces II, Anal. Numér. Théor. Approx., 20 (1991), 25–38.  Google Scholar

[6]

M. Campiti, Korovkin theorems for vector-valued continuous functions, in Approximation Theory, Spline Functions and Applications (Internat. Conf., Maratea, May 1991), 293–302, Nato Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 356, Kluwer Acad. Publ., Dordrecht, 1992.  Google Scholar

[7]

M. Campiti, Convergence of nets of monotone operators between cones of set-valued functions, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 126 (1992), 39–54.  Google Scholar

[8]

M. Campiti, Convexity-monotone operators in Korovkin theory, Rend. Circ. Mat. Palermo, 33 (1993), 229–238.  Google Scholar

[9]

M. Campiti, Korovkin-type approximation in spaces of vector-valued and set-valued functions, Appl. Anal., 98 (2019), 2486–2496. doi: 10.1080/00036811.2018.1463522.  Google Scholar

[10]

M. Campiti, On the Korovkin-type approximation of set-valued continuous functions, Constr. Math. Anal., 4 (2021), 119–134. doi: 10.33205/cma. 863145.  Google Scholar

[11]

K. Keimel and W. Roth, A Korovkin type approximation theorem for set-valued functions, Proc. Amer. Math. Soc., 104 (1988), 819–824. doi: 10.1090/S0002-9939-1988-0964863-8.  Google Scholar

[12]

K. Keimel and W. Roth, Ordered Cones and Approximation, Lecture Notes in Mathematics, 1517, Springer-Verlag Berlin Heidelberg, 1992. doi: 10.1007/BFb0089190.  Google Scholar

show all references

References:
[1]

F. Altomare and M. Campiti, Korovkin-Type Approximation Theory and its Applications, De Gruyter Studies in Mathematics, 17, Berlin-Heidelberg-New York, 1994. doi: 10.1515/9783110884586.  Google Scholar

[2]

F. Altomare, M. Cappelletti Montano, V. Leonessa and I. Rașa, Markov Operators, Positive Semigroups and Approximation Processes, , De Gruyter Studies in Mathematics, 61, Berlin-Munich-Boston, 2014. doi: 10.1515/9783110366976.  Google Scholar

[3]

M. Campiti, A Korovkin-type theorem for set-valued Hausdorff continuous functions, Matematiche (Catania), 42 (1987), 29–35.  Google Scholar

[4]

M. Campiti, Approximation of continuous set-valued functions in Fréchet spaces I, Anal. Numér. Théor. Approx., 20 (1991), 15–23.  Google Scholar

[5]

M. Campiti, Approximation of continuous set-valued functions in Fréchet spaces II, Anal. Numér. Théor. Approx., 20 (1991), 25–38.  Google Scholar

[6]

M. Campiti, Korovkin theorems for vector-valued continuous functions, in Approximation Theory, Spline Functions and Applications (Internat. Conf., Maratea, May 1991), 293–302, Nato Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 356, Kluwer Acad. Publ., Dordrecht, 1992.  Google Scholar

[7]

M. Campiti, Convergence of nets of monotone operators between cones of set-valued functions, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 126 (1992), 39–54.  Google Scholar

[8]

M. Campiti, Convexity-monotone operators in Korovkin theory, Rend. Circ. Mat. Palermo, 33 (1993), 229–238.  Google Scholar

[9]

M. Campiti, Korovkin-type approximation in spaces of vector-valued and set-valued functions, Appl. Anal., 98 (2019), 2486–2496. doi: 10.1080/00036811.2018.1463522.  Google Scholar

[10]

M. Campiti, On the Korovkin-type approximation of set-valued continuous functions, Constr. Math. Anal., 4 (2021), 119–134. doi: 10.33205/cma. 863145.  Google Scholar

[11]

K. Keimel and W. Roth, A Korovkin type approximation theorem for set-valued functions, Proc. Amer. Math. Soc., 104 (1988), 819–824. doi: 10.1090/S0002-9939-1988-0964863-8.  Google Scholar

[12]

K. Keimel and W. Roth, Ordered Cones and Approximation, Lecture Notes in Mathematics, 1517, Springer-Verlag Berlin Heidelberg, 1992. doi: 10.1007/BFb0089190.  Google Scholar

[1]

Olaf Klein. On the representation of hysteresis operators acting on vector-valued, left-continuous and piecewise monotaffine and continuous functions. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2591-2614. doi: 10.3934/dcds.2015.35.2591

[2]

Shay Kels, Nira Dyn. Bernstein-type approximation of set-valued functions in the symmetric difference metric. Discrete & Continuous Dynamical Systems, 2014, 34 (3) : 1041-1060. doi: 10.3934/dcds.2014.34.1041

[3]

Mariusz Michta. Stochastic inclusions with non-continuous set-valued operators. Conference Publications, 2009, 2009 (Special) : 548-557. doi: 10.3934/proc.2009.2009.548

[4]

Markus Kunze, Abdallah Maichine, Abdelaziz Rhandi. Vector-valued Schrödinger operators in Lp-spaces. Discrete & Continuous Dynamical Systems - S, 2020, 13 (5) : 1529-1541. doi: 10.3934/dcdss.2020086

[5]

Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246

[6]

Jiawei Chen, Shengjie Li, Jen-Chih Yao. Vector-valued separation functions and constrained vector optimization problems: optimality and saddle points. Journal of Industrial & Management Optimization, 2020, 16 (2) : 707-724. doi: 10.3934/jimo.2018174

[7]

Harun Karsli. On approximation to discrete q-derivatives of functions via q-Bernstein-Schurer operators. Mathematical Foundations of Computing, 2021, 4 (1) : 15-30. doi: 10.3934/mfc.2020023

[8]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[9]

Fatemeh Abtahi, Zeinab Kamali, Maryam Toutounchi. The BSE concepts for vector-valued Lipschitz algebras. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1171-1186. doi: 10.3934/cpaa.2021011

[10]

Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108

[11]

Ling-Xiong Han, Wen-Hui Li, Feng Qi. Approximation by multivariate Baskakov–Kantorovich operators in Orlicz spaces. Electronic Research Archive, 2020, 28 (2) : 721-738. doi: 10.3934/era.2020037

[12]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[13]

Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087

[14]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[15]

Peter Giesl, Boumediene Hamzi, Martin Rasmussen, Kevin Webster. Approximation of Lyapunov functions from noisy data. Journal of Computational Dynamics, 2020, 7 (1) : 57-81. doi: 10.3934/jcd.2020003

[16]

Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35

[17]

Ying Gao, Xinmin Yang, Jin Yang, Hong Yan. Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps. Journal of Industrial & Management Optimization, 2015, 11 (2) : 673-683. doi: 10.3934/jimo.2015.11.673

[18]

Xing Wang, Nan-Jing Huang. Stability analysis for set-valued vector mixed variational inequalities in real reflexive Banach spaces. Journal of Industrial & Management Optimization, 2013, 9 (1) : 57-74. doi: 10.3934/jimo.2013.9.57

[19]

Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313

[20]

Nikos Katzourakis. Corrigendum to the paper: Nonuniqueness in Vector-Valued Calculus of Variations in $ L^\infty $ and some Linear Elliptic Systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2197-2198. doi: 10.3934/cpaa.2019098

 Impact Factor: 

Metrics

  • PDF downloads (46)
  • HTML views (26)
  • Cited by (0)

Other articles
by authors

[Back to Top]