doi: 10.3934/mfc.2021033
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Cesàro summability and Lebesgue points of higher dimensional Fourier series

Department of Numerical Analysis, Eötvös L. University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary

Corresponding author: Ferenc Weisz

Received  June 2021 Revised  October 2021 Early access November 2021

Fund Project: This research was supported by the Hungarian Scientific Research Funds (OTKA) No KH130426

We give four generalizations of the classical Lebesgue's theorem to multi-dimensional functions and Fourier series. We introduce four new concepts of Lebesgue points, the corresponding Hardy-Littlewood type maximal functions and show that almost every point is a Lebesgue point. For four different types of summability and convergences investigated in the literature, we prove that the Cesàro means $ \sigma_n^{\alpha}f $ of the Fourier series of a multi-dimensional function converge to $ f $ at each Lebesgue point as $ n\to \infty $.

Citation: Ferenc Weisz. Cesàro summability and Lebesgue points of higher dimensional Fourier series. Mathematical Foundations of Computing, doi: 10.3934/mfc.2021033
References:
[1]

J. Arias de Reyna, Pointwise convergence of fourier series, J. London Math. Soc., 65 (2002), 139-153.  doi: 10.1112/S0024610701002824.  Google Scholar

[2]

N. K. Bary, A Treatise on Trigonometric Series, Vols. I, II. Authorized translation by Margaret F. Mullins. A Pergamon Press Book The Macmillan Company, New York 1964.  Google Scholar

[3]

E. S. Belinsky, Summability of multiple Fourier series at Lebesgue points, Teor. Funkci$\mathop l\limits^ \vee $ Funkcional. Anal. i Priložen, 169 (1975), 3–12, (Russian).  Google Scholar

[4]

H. BerensZ. Li and Y. Xu, On $l_1$ Riesz summability of the inverse Fourier integral, Indag. Math. (N.S.), 12 (2001), 41-53.  doi: 10.1016/S0019-3577(01)80004-5.  Google Scholar

[5]

H. Berens and Y. Xu, Fejér means for multivariate Fourier series, Math. Z., 221 (1996), 449-465.  doi: 10.1007/PL00004254.  Google Scholar

[6]

H. Berens and Y. Xu, $l$-1 summability of multiple Fourier integrals and positivity, Math. Proc. Cambridge Philos. Soc., 122 (1997), 149-172.  doi: 10.1017/S0305004196001521.  Google Scholar

[7]

L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math., 116 (1966), 135-157.  doi: 10.1007/BF02392815.  Google Scholar

[8]

S. Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and $H^p$-theory on product domains, Bull. Amer. Math. Soc., 12 (1985), 1-43.  doi: 10.1090/S0273-0979-1985-15291-7.  Google Scholar

[9] K. M. Davis and Y. C. Chang, Lectures on Bochner-Riesz Means, vol. 114 of London Mathematical Society Lecture Note Series, Cambridge University Press, 1987.  doi: 10.1017/CBO9781107325654.  Google Scholar
[10]

C. Demeter, A guide to Carleson's theorem, Rocky Mt. J. Math., 45 (2015), 169-212.  doi: 10.1216/RMJ-2015-45-1-169.  Google Scholar

[11]

P. du Bois-Reymond, Convergenz und Divergenz der Fourier'schen Darstellungsformeln, Math. Ann., 10 (1876), 431-445.  doi: 10.1007/BF01442324.  Google Scholar

[12]

C. Fefferman, On the convergence of multiple Fourier series, Bull. Amer. Math. Soc., 77 (1971), 744-745.  doi: 10.1090/S0002-9904-1971-12793-3.  Google Scholar

[13]

C. Fefferman, On the divergence of multiple Fourier series, Bull. Amer. Math. Soc., 77 (1971), 191-195.  doi: 10.1090/S0002-9904-1971-12675-7.  Google Scholar

[14]

C. Fefferman, The multiplier problem for the ball, Ann. of Math., 94 (1971), 330-336.  doi: 10.2307/1970864.  Google Scholar

[15]

H. G. Feichtinger and F. Weisz, The Segal algebra $S_0(\mathbb R^d)$ and norm summability of Fourier series and Fourier transforms, Monatsh. Math., 148 (2006), 333-349.  doi: 10.1007/s00605-005-0358-4.  Google Scholar

[16]

H. G. Feichtinger and F. Weisz, Wiener amalgams and pointwise summability of Fourier transforms and Fourier series, Math. Proc. Cambridge Philos. Soc., 140 (2006), 509-536.  doi: 10.1017/S0305004106009273.  Google Scholar

[17]

L. Fejér, Untersuchungen über fouriersche reihen, Math. Ann., 58 (1903), 51-69.  doi: 10.1007/BF01447779.  Google Scholar

[18]

L. Fejér, Beispiele stetiger Funktionen mit divergenter Fourier-reihe, J. Reine Angew. Math., 137 (1910), 1-5.  doi: 10.1515/crll.1910.137.1.  Google Scholar

[19]

O. D. Gabisoniya, Points of summability of double Fourier series by certain linear methods, Izv. Vyssh. Uchebn. Zaved., Mat., 5 (1972), 29–37, (Russian).  Google Scholar

[20]

G. Gát, Pointwise convergence of cone-like restricted two-dimensional $(C, 1)$ means of trigonometric Fourier series, J. Approx. Theory., 149 (2007), 74-102.  doi: 10.1016/j.jat.2006.08.006.  Google Scholar

[21]

G. Gát, Almost everywhere convergence of sequences of Cesàro and Riesz means of integrable functions with respect to the multidimensional Walsh system, Acta Math. Sin., Engl. Ser., 30 (2014), 311-322.  doi: 10.1007/s10114-013-1766-3.  Google Scholar

[22]

G. GátU. Goginava and K. Nagy, On the Marcinkiewicz-Fejér means of double Fourier series with respect to Walsh-Kaczmarz system, Studia Sci. Math. Hungar., 46 (2009), 399-421.  doi: 10.1556/sscmath.2009.1099.  Google Scholar

[23]

U. Goginava, Marcinkiewicz-Fejér means of $d$-dimensional Walsh-Fourier series, J. Math. Anal. Appl., 307 (2005), 206-218.  doi: 10.1016/j.jmaa.2004.11.001.  Google Scholar

[24]

U. Goginava, Almost everywhere convergence of $(C, \alpha)$-means of cubical partial sums of d-dimensional Walsh-Fourier series, J. Approx. Theory, 141 (2006), 8-28.  doi: 10.1016/j.jat.2006.01.001.  Google Scholar

[25]

U. Goginava, The maximal operator of the Marcinkiewicz-Fejér means of $d$-dimensional Walsh-Fourier series, East J. Approx., 12 (2006), 295-302.   Google Scholar

[26]

L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, New Jersey, 2004.  Google Scholar

[27]

L. Grafakos, Classical Fourier Analysis, 3$^{rd}$ edition, Graduate Texts in Mathematics, 249. Springer, New York, 2014. doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[28]

L. Grafakos, Modern Fourier Analysis, 3$^{rd}$ edition, Graduate Texts in Mathematics, 250. Springer, New York, 2014. doi: 10.1007/978-1-4939-1230-8.  Google Scholar

[29]

R. A. Hunt, On the convergence of Fourier series, In Orthogonal Expansions and Their Continuous Analogues, Proc. Conf. Edwardsville, Ill., 1967, Illinois Univ. Press Carbondale, (1967), 235–255.  Google Scholar

[30]

B. JessenJ. Marcinkiewicz and A. Zygmund, Note on the differentiability of multiple integrals, Fundam. Math., 25 (1935), 217-234.   Google Scholar

[31]

A. N. Kolmogorov, Un serie de Fourier-Lebesgue divergente presque partout, Fundamenta Math., 4 (1923), 324-328.   Google Scholar

[32]

A. N. Kolmogorov, Un serie de Fourier-Lebesgue divergente partout, C. R. Acad. Sci. Pariss, 183 (1926), 1327-1328.   Google Scholar

[33]

M. T. Lacey, Carleson's theorem: Proof, complements, variations, Publ. Mat., Barc., 48 (2004), 251-307.   Google Scholar

[34]

H. Lebesgue, Recherches sur la convergence des séries de Fourier, Math. Ann., 61 (1905), 251-280.  doi: 10.1007/BF01457565.  Google Scholar

[35]

S. Lu and D. Yan, Bochner-Riesz Means on Euclidean Spaces, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. doi: 10.1142/8745.  Google Scholar

[36]

J. Marcinkiewicz, Sur une méthode remarquable de sommation des séries doubles de Fourier, Ann. Scuola Norm. Sup. Pisa, 8 (1939), 149-160.   Google Scholar

[37]

J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, Fund. Math., 32 (1939), 122-132.   Google Scholar

[38] C. Muscalu and W. Schlag, Classical and Multilinear Harmonic Analysis, Cambridge University Press, Cambridge, 2013.   Google Scholar
[39]

K. Nagy and G. Tephnadze, The Walsh-Kaczmarz-Marcinkiewicz means and Hardy spaces, Acta Math. Hungar., 149 (2016), 346-374.  doi: 10.1007/s10474-016-0617-y.  Google Scholar

[40]

L. E. PerssonG. Tephnadze and P. Wall, Maximal operators of Vilenkin-Nörlund means, J. Fourier Anal. Appl., 21 (2015), 76-94.  doi: 10.1007/s00041-014-9345-2.  Google Scholar

[41]

M. Riesz, Sur la sommation des séries de Fourier, Acta Sci. Math. (Szeged), 1 (1923), 104-113.   Google Scholar

[42]

S. Saks, Remark on the differentiability of the Lebesgue indefinite integral, Fundam. Math., 22 (1934), 257-261.   Google Scholar

[43]

P. Simon, Cesàro summability with respect to two-parameter Walsh systems, Monatsh. Math., 131 (2000), 321-334.  doi: 10.1007/s006050070004.  Google Scholar

[44]

P. Simon, $(C, \alpha)$ summability of Walsh-Kaczmarz-Fourier series, J. Approx. Theory, 127 (2004), 39-60.  doi: 10.1016/j.jat.2004.02.003.  Google Scholar

[45]

M. A. Skopina, The generalized Lebesgue sets of functions of two variables, Approximation theory, Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam, 58 (1991), 615-625.   Google Scholar

[46]

M. A. Skopina, The order of growth of quadratic partial sums of a double Fourier series, Math. Notes, 51 (1992), 576-582.  doi: 10.1007/BF01263302.  Google Scholar

[47] E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, N. J., 1993.   Google Scholar
[48] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N. J., 1971.   Google Scholar
[49] A. Torchinsky, Real-variable Methods in Harmonic Analysis, Academic Press, Inc., Orlando, FL, 1986.   Google Scholar
[50]

F. Weisz, $(C, \alpha)$ means of $d$-dimensional trigonometric-Fourier series, Publ. Math. Debrecen, 52 (1998), 705-720.   Google Scholar

[51]

F. Weisz, Summability of multi-dimensional trigonometric Fourier series, Surv. Approx. Theory, 7 (2012), 1-179.   Google Scholar

[52]

F. Weisz, Lebesgue points of two-dimensional Fourier transforms and strong summability, J. Fourier Anal. Appl., 21 (2015), 885-914.  doi: 10.1007/s00041-015-9393-2.  Google Scholar

[53]

F. Weisz, Convergence and Summability of Fourier Transforms and Hardy Spaces, Applied and Numerical Harmonic Analysis, Springer, Birkhäuser, Basel, 2017.  Google Scholar

[54]

F. Weisz, Marcinkiewicz summability of Fourier series, Lebesgue points and strong summability, Acta Math. Hungar., 153 (2017), 356-381.  doi: 10.1007/s10474-017-0737-z.  Google Scholar

[55]

F. Weisz, Lebesgue points and Cesàro summability of higher dimensional Fourier series over a cone, Acta Sci. Math. (Szeged), 87 (2021), 505-515.   Google Scholar

[56]

F. Weisz, Lebesgue points of $\ell_1$-Cesàro summability of $d$-dimensional Fourier series, Adv. Oper. Theory., 6 (2021), 48.  doi: 10.1007/s43036-021-00144-3.  Google Scholar

[57]

F. Weisz, Unrestricted Cesàro summability of $d$-dimensional Fourier series and Lebesgue points, Constr. Math. Anal., 4 (2021), 179-185.   Google Scholar

[58]

Y. Xu, Christoffel functions and Fourier series for multivariate orthogonal polynomials, J. Approx. Theory, 82 (1995), 205-239.  doi: 10.1006/jath.1995.1075.  Google Scholar

[59]

L. Zhizhiashvili, Trigonometric Fourier Series and their Conjugates, Kluwer Academic Publishers, Dordrecht, 1996. doi: 10.1007/978-94-009-0283-1.  Google Scholar

[60] A. Zygmund, Trigonometric Series, 2$^{nd}$ edition, Cambridge Press, London, 1968.   Google Scholar

show all references

References:
[1]

J. Arias de Reyna, Pointwise convergence of fourier series, J. London Math. Soc., 65 (2002), 139-153.  doi: 10.1112/S0024610701002824.  Google Scholar

[2]

N. K. Bary, A Treatise on Trigonometric Series, Vols. I, II. Authorized translation by Margaret F. Mullins. A Pergamon Press Book The Macmillan Company, New York 1964.  Google Scholar

[3]

E. S. Belinsky, Summability of multiple Fourier series at Lebesgue points, Teor. Funkci$\mathop l\limits^ \vee $ Funkcional. Anal. i Priložen, 169 (1975), 3–12, (Russian).  Google Scholar

[4]

H. BerensZ. Li and Y. Xu, On $l_1$ Riesz summability of the inverse Fourier integral, Indag. Math. (N.S.), 12 (2001), 41-53.  doi: 10.1016/S0019-3577(01)80004-5.  Google Scholar

[5]

H. Berens and Y. Xu, Fejér means for multivariate Fourier series, Math. Z., 221 (1996), 449-465.  doi: 10.1007/PL00004254.  Google Scholar

[6]

H. Berens and Y. Xu, $l$-1 summability of multiple Fourier integrals and positivity, Math. Proc. Cambridge Philos. Soc., 122 (1997), 149-172.  doi: 10.1017/S0305004196001521.  Google Scholar

[7]

L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math., 116 (1966), 135-157.  doi: 10.1007/BF02392815.  Google Scholar

[8]

S. Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and $H^p$-theory on product domains, Bull. Amer. Math. Soc., 12 (1985), 1-43.  doi: 10.1090/S0273-0979-1985-15291-7.  Google Scholar

[9] K. M. Davis and Y. C. Chang, Lectures on Bochner-Riesz Means, vol. 114 of London Mathematical Society Lecture Note Series, Cambridge University Press, 1987.  doi: 10.1017/CBO9781107325654.  Google Scholar
[10]

C. Demeter, A guide to Carleson's theorem, Rocky Mt. J. Math., 45 (2015), 169-212.  doi: 10.1216/RMJ-2015-45-1-169.  Google Scholar

[11]

P. du Bois-Reymond, Convergenz und Divergenz der Fourier'schen Darstellungsformeln, Math. Ann., 10 (1876), 431-445.  doi: 10.1007/BF01442324.  Google Scholar

[12]

C. Fefferman, On the convergence of multiple Fourier series, Bull. Amer. Math. Soc., 77 (1971), 744-745.  doi: 10.1090/S0002-9904-1971-12793-3.  Google Scholar

[13]

C. Fefferman, On the divergence of multiple Fourier series, Bull. Amer. Math. Soc., 77 (1971), 191-195.  doi: 10.1090/S0002-9904-1971-12675-7.  Google Scholar

[14]

C. Fefferman, The multiplier problem for the ball, Ann. of Math., 94 (1971), 330-336.  doi: 10.2307/1970864.  Google Scholar

[15]

H. G. Feichtinger and F. Weisz, The Segal algebra $S_0(\mathbb R^d)$ and norm summability of Fourier series and Fourier transforms, Monatsh. Math., 148 (2006), 333-349.  doi: 10.1007/s00605-005-0358-4.  Google Scholar

[16]

H. G. Feichtinger and F. Weisz, Wiener amalgams and pointwise summability of Fourier transforms and Fourier series, Math. Proc. Cambridge Philos. Soc., 140 (2006), 509-536.  doi: 10.1017/S0305004106009273.  Google Scholar

[17]

L. Fejér, Untersuchungen über fouriersche reihen, Math. Ann., 58 (1903), 51-69.  doi: 10.1007/BF01447779.  Google Scholar

[18]

L. Fejér, Beispiele stetiger Funktionen mit divergenter Fourier-reihe, J. Reine Angew. Math., 137 (1910), 1-5.  doi: 10.1515/crll.1910.137.1.  Google Scholar

[19]

O. D. Gabisoniya, Points of summability of double Fourier series by certain linear methods, Izv. Vyssh. Uchebn. Zaved., Mat., 5 (1972), 29–37, (Russian).  Google Scholar

[20]

G. Gát, Pointwise convergence of cone-like restricted two-dimensional $(C, 1)$ means of trigonometric Fourier series, J. Approx. Theory., 149 (2007), 74-102.  doi: 10.1016/j.jat.2006.08.006.  Google Scholar

[21]

G. Gát, Almost everywhere convergence of sequences of Cesàro and Riesz means of integrable functions with respect to the multidimensional Walsh system, Acta Math. Sin., Engl. Ser., 30 (2014), 311-322.  doi: 10.1007/s10114-013-1766-3.  Google Scholar

[22]

G. GátU. Goginava and K. Nagy, On the Marcinkiewicz-Fejér means of double Fourier series with respect to Walsh-Kaczmarz system, Studia Sci. Math. Hungar., 46 (2009), 399-421.  doi: 10.1556/sscmath.2009.1099.  Google Scholar

[23]

U. Goginava, Marcinkiewicz-Fejér means of $d$-dimensional Walsh-Fourier series, J. Math. Anal. Appl., 307 (2005), 206-218.  doi: 10.1016/j.jmaa.2004.11.001.  Google Scholar

[24]

U. Goginava, Almost everywhere convergence of $(C, \alpha)$-means of cubical partial sums of d-dimensional Walsh-Fourier series, J. Approx. Theory, 141 (2006), 8-28.  doi: 10.1016/j.jat.2006.01.001.  Google Scholar

[25]

U. Goginava, The maximal operator of the Marcinkiewicz-Fejér means of $d$-dimensional Walsh-Fourier series, East J. Approx., 12 (2006), 295-302.   Google Scholar

[26]

L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, New Jersey, 2004.  Google Scholar

[27]

L. Grafakos, Classical Fourier Analysis, 3$^{rd}$ edition, Graduate Texts in Mathematics, 249. Springer, New York, 2014. doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[28]

L. Grafakos, Modern Fourier Analysis, 3$^{rd}$ edition, Graduate Texts in Mathematics, 250. Springer, New York, 2014. doi: 10.1007/978-1-4939-1230-8.  Google Scholar

[29]

R. A. Hunt, On the convergence of Fourier series, In Orthogonal Expansions and Their Continuous Analogues, Proc. Conf. Edwardsville, Ill., 1967, Illinois Univ. Press Carbondale, (1967), 235–255.  Google Scholar

[30]

B. JessenJ. Marcinkiewicz and A. Zygmund, Note on the differentiability of multiple integrals, Fundam. Math., 25 (1935), 217-234.   Google Scholar

[31]

A. N. Kolmogorov, Un serie de Fourier-Lebesgue divergente presque partout, Fundamenta Math., 4 (1923), 324-328.   Google Scholar

[32]

A. N. Kolmogorov, Un serie de Fourier-Lebesgue divergente partout, C. R. Acad. Sci. Pariss, 183 (1926), 1327-1328.   Google Scholar

[33]

M. T. Lacey, Carleson's theorem: Proof, complements, variations, Publ. Mat., Barc., 48 (2004), 251-307.   Google Scholar

[34]

H. Lebesgue, Recherches sur la convergence des séries de Fourier, Math. Ann., 61 (1905), 251-280.  doi: 10.1007/BF01457565.  Google Scholar

[35]

S. Lu and D. Yan, Bochner-Riesz Means on Euclidean Spaces, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. doi: 10.1142/8745.  Google Scholar

[36]

J. Marcinkiewicz, Sur une méthode remarquable de sommation des séries doubles de Fourier, Ann. Scuola Norm. Sup. Pisa, 8 (1939), 149-160.   Google Scholar

[37]

J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, Fund. Math., 32 (1939), 122-132.   Google Scholar

[38] C. Muscalu and W. Schlag, Classical and Multilinear Harmonic Analysis, Cambridge University Press, Cambridge, 2013.   Google Scholar
[39]

K. Nagy and G. Tephnadze, The Walsh-Kaczmarz-Marcinkiewicz means and Hardy spaces, Acta Math. Hungar., 149 (2016), 346-374.  doi: 10.1007/s10474-016-0617-y.  Google Scholar

[40]

L. E. PerssonG. Tephnadze and P. Wall, Maximal operators of Vilenkin-Nörlund means, J. Fourier Anal. Appl., 21 (2015), 76-94.  doi: 10.1007/s00041-014-9345-2.  Google Scholar

[41]

M. Riesz, Sur la sommation des séries de Fourier, Acta Sci. Math. (Szeged), 1 (1923), 104-113.   Google Scholar

[42]

S. Saks, Remark on the differentiability of the Lebesgue indefinite integral, Fundam. Math., 22 (1934), 257-261.   Google Scholar

[43]

P. Simon, Cesàro summability with respect to two-parameter Walsh systems, Monatsh. Math., 131 (2000), 321-334.  doi: 10.1007/s006050070004.  Google Scholar

[44]

P. Simon, $(C, \alpha)$ summability of Walsh-Kaczmarz-Fourier series, J. Approx. Theory, 127 (2004), 39-60.  doi: 10.1016/j.jat.2004.02.003.  Google Scholar

[45]

M. A. Skopina, The generalized Lebesgue sets of functions of two variables, Approximation theory, Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam, 58 (1991), 615-625.   Google Scholar

[46]

M. A. Skopina, The order of growth of quadratic partial sums of a double Fourier series, Math. Notes, 51 (1992), 576-582.  doi: 10.1007/BF01263302.  Google Scholar

[47] E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, N. J., 1993.   Google Scholar
[48] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N. J., 1971.   Google Scholar
[49] A. Torchinsky, Real-variable Methods in Harmonic Analysis, Academic Press, Inc., Orlando, FL, 1986.   Google Scholar
[50]

F. Weisz, $(C, \alpha)$ means of $d$-dimensional trigonometric-Fourier series, Publ. Math. Debrecen, 52 (1998), 705-720.   Google Scholar

[51]

F. Weisz, Summability of multi-dimensional trigonometric Fourier series, Surv. Approx. Theory, 7 (2012), 1-179.   Google Scholar

[52]

F. Weisz, Lebesgue points of two-dimensional Fourier transforms and strong summability, J. Fourier Anal. Appl., 21 (2015), 885-914.  doi: 10.1007/s00041-015-9393-2.  Google Scholar

[53]

F. Weisz, Convergence and Summability of Fourier Transforms and Hardy Spaces, Applied and Numerical Harmonic Analysis, Springer, Birkhäuser, Basel, 2017.  Google Scholar

[54]

F. Weisz, Marcinkiewicz summability of Fourier series, Lebesgue points and strong summability, Acta Math. Hungar., 153 (2017), 356-381.  doi: 10.1007/s10474-017-0737-z.  Google Scholar

[55]

F. Weisz, Lebesgue points and Cesàro summability of higher dimensional Fourier series over a cone, Acta Sci. Math. (Szeged), 87 (2021), 505-515.   Google Scholar

[56]

F. Weisz, Lebesgue points of $\ell_1$-Cesàro summability of $d$-dimensional Fourier series, Adv. Oper. Theory., 6 (2021), 48.  doi: 10.1007/s43036-021-00144-3.  Google Scholar

[57]

F. Weisz, Unrestricted Cesàro summability of $d$-dimensional Fourier series and Lebesgue points, Constr. Math. Anal., 4 (2021), 179-185.   Google Scholar

[58]

Y. Xu, Christoffel functions and Fourier series for multivariate orthogonal polynomials, J. Approx. Theory, 82 (1995), 205-239.  doi: 10.1006/jath.1995.1075.  Google Scholar

[59]

L. Zhizhiashvili, Trigonometric Fourier Series and their Conjugates, Kluwer Academic Publishers, Dordrecht, 1996. doi: 10.1007/978-94-009-0283-1.  Google Scholar

[60] A. Zygmund, Trigonometric Series, 2$^{nd}$ edition, Cambridge Press, London, 1968.   Google Scholar
Figure 1.  Regions of the $ \ell_q $-partial sums for $ d = 2 $
Figure 2.  The cone for $ d = 2 $
[1]

Aleksandra Čižmešija, Iva Franjić, Josip Pečarić, Dora Pokaz. On a family of means generated by the Hardy-Littlewood maximal inequality. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 223-231. doi: 10.3934/naco.2012.2.223

[2]

Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021102

[3]

Dachun Yang, Sibei Yang. Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated to non-negative self-adjoint operators satisfying Gaussian estimates. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2135-2160. doi: 10.3934/cpaa.2016031

[4]

Lucio Boccardo, Luigi Orsina, Ireneo Peral. A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential. Discrete & Continuous Dynamical Systems, 2006, 16 (3) : 513-523. doi: 10.3934/dcds.2006.16.513

[5]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[6]

Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027

[7]

Maolin Cheng, Mingyin Xiang. Application of a modified CES production function model based on improved firefly algorithm. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1571-1584. doi: 10.3934/jimo.2019018

[8]

Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653

[9]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[10]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[11]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[12]

Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1319-1345. doi: 10.3934/cpaa.2021022

[13]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[14]

Yu Zheng, Carlos A. Santos, Zifei Shen, Minbo Yang. Least energy solutions for coupled hartree system with hardy-littlewood-sobolev critical exponents. Communications on Pure & Applied Analysis, 2020, 19 (1) : 329-369. doi: 10.3934/cpaa.2020018

[15]

Xiaoqian Liu, Yutian Lei. Existence of positive solutions for integral systems of the weighted Hardy-Littlewood-Sobolev type. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 467-489. doi: 10.3934/dcds.2020018

[16]

Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791

[17]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[18]

Hua Jin, Wenbin Liu, Huixing Zhang, Jianjun Zhang. Ground states of nonlinear fractional Choquard equations with Hardy-Littlewood-Sobolev critical growth. Communications on Pure & Applied Analysis, 2020, 19 (1) : 123-144. doi: 10.3934/cpaa.2020008

[19]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[20]

Minbo Yang, Fukun Zhao, Shunneng Zhao. Classification of solutions to a nonlocal equation with doubly Hardy-Littlewood-Sobolev critical exponents. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 5209-5241. doi: 10.3934/dcds.2021074

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]