The aim of this paper is to study some approximation properties of the Durrmeyer variant of $ \alpha $-Baskakov operators $ M_{n,\alpha} $ proposed by Aral and Erbay [
Citation: |
[1] | O. Agratini, Linear operators that preserve some test functions, Int. J. Math. Math. Sci., 2006 (2006), Article ID 094136, 11 pp. doi: 10.1155/IJMMS/2006/94136. |
[2] | F. Altomare and M. Campiti, Korovkin-type Approximation Theory and its Applications, de Gruyter, 2011. |
[3] | A. Aral and H. Erbay, Parametric generalization of Baskakov operators, Math. Commun., 24 (2019), 119-131. |
[4] | A. Aral and V. Gupta, On q-Baskakov type operators, Demonstr. Math., 42 (2009), 109-122. |
[5] | V. Baskakov, An instance of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR, 113 (1957), 249-251. |
[6] | W. Z. Chen, Approximation Theory of Operators, Xiamen University Publishing House, Xiamen, 1989. |
[7] | Z. Ditzian and V. Totik, Moduli of Smoothness, 9$^th$ edition, Springer Series in Computational Mathematics, Springer-Verlag, New York, 1987. doi: 10.1007/978-1-4612-4778-4. |
[8] | A. D Gadjiev, On P. P. Korovkin type theorems, Mat. Zametki, 20 (1976), 781-786. |
[9] | V. Gupta, An estimate on the convergence of Baskakov-Bézier operators, J. Math. Anal. Appl., 312 (2005), 280-288. doi: 10.1016/j.jmaa.2005.03.041. |
[10] | V. Gupta and G. C. Greubel, Moment estimations of new Szász-Mirakyan-Durrmeyer operators, Appl. Math. Comput., 271 (2015), 540-547. doi: 10.1016/j.amc.2015.09.037. |
[11] | V. Gupta, G. Tachev and A. M. Acu, Modified Kantorovich operators with better approximation properties, Numer. Algorithms, 81 (2019), 125-149. doi: 10.1007/s11075-018-0538-7. |
[12] | M. Heimann, Direct and converse results for operators of Baskakov-Durrmeyer type, Approx. Theory Appl., 5 (1989), 105-127. |
[13] | N. Ispir, On modified Baskakov operators on weighted spaces, Turkish J. Math., 25 (2001), 355-365. |
[14] |
N. Ispir and |
[15] | A. Kajla, Direct estimates of certain Miheşan-Durrmeyer type operators, Adv. Oper. Theory., 2 (2017), 162-178. doi: 10.22034/aot.1612-1079. |
[16] | J. P. King, Positive linear operators which preserve $x^2$, Acta Math. Hungar., 99 (2003), 203-208. doi: 10.1023/A:1024571126455. |
[17] | A. Kumar and L. N. Mishra, Approximation by modified Jain-Baskakov-Stancu operators, Tbilisi Math. J., 10 (2017), 185-199. doi: 10.1515/tmj-2017-0035. |
[18] | B. Lenze, On Lipschitz-type maximal functions and their smoothnes spaces, Nederl. Akad. Wetensch. Indag. Math., 50 (1988), 53-63. |
[19] | M. Nasiruzzaman, N. Rao, S. Wazir and R. Kumar, Approximation on parametric extension of Baskakov-Durrmeyer operators on weighted space, J. Inequal. Appl., 2019 (2019), 103, 11pp. doi: 10.1186/s13660-019-2055-1. |
[20] | A. Wafi and S. Khatoon, On the order of approximation of functions by generalized Baskakov operators, Indian J. Pure Appl. Math., 35 (2004), 347-358. |
[21] | I. Yuksel and N. Ispir, Weighted approximation by a certain family of summation integral-type operators, Comput. Math. Appl., 52 (2006), 1463-1470. doi: 10.1016/j.camwa.2006.08.031. |
[22] | C. Zhang and Z. Zhu, Preservation properties of the Baskakov-Kantorovich operators, Comput. Math. Appl., 57 (2009), 1450-1455. doi: 10.1016/j.camwa.2009.01.027. |