The aim of this paper is to study some approximation properties of the Durrmeyer variant of $ \alpha $-Baskakov operators $ M_{n,\alpha} $ proposed by Aral and Erbay [
Citation: |
[1] |
O. Agratini, Linear operators that preserve some test functions, Int. J. Math. Math. Sci., 2006 (2006), Article ID 094136, 11 pp.
doi: 10.1155/IJMMS/2006/94136.![]() ![]() ![]() |
[2] |
F. Altomare and M. Campiti, Korovkin-type Approximation Theory and its Applications, de Gruyter, 2011.
![]() |
[3] |
A. Aral and H. Erbay, Parametric generalization of Baskakov operators, Math. Commun., 24 (2019), 119-131.
![]() ![]() |
[4] |
A. Aral and V. Gupta, On q-Baskakov type operators, Demonstr. Math., 42 (2009), 109-122.
![]() ![]() |
[5] |
V. Baskakov, An instance of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR, 113 (1957), 249-251.
![]() ![]() |
[6] |
W. Z. Chen, Approximation Theory of Operators, Xiamen University Publishing House, Xiamen, 1989.
![]() |
[7] |
Z. Ditzian and V. Totik, Moduli of Smoothness, 9$^th$ edition, Springer Series in Computational Mathematics, Springer-Verlag, New York, 1987.
doi: 10.1007/978-1-4612-4778-4.![]() ![]() ![]() |
[8] |
A. D Gadjiev, On P. P. Korovkin type theorems, Mat. Zametki, 20 (1976), 781-786.
![]() ![]() |
[9] |
V. Gupta, An estimate on the convergence of Baskakov-Bézier operators, J. Math. Anal. Appl., 312 (2005), 280-288.
doi: 10.1016/j.jmaa.2005.03.041.![]() ![]() ![]() |
[10] |
V. Gupta and G. C. Greubel, Moment estimations of new Szász-Mirakyan-Durrmeyer operators, Appl. Math. Comput., 271 (2015), 540-547.
doi: 10.1016/j.amc.2015.09.037.![]() ![]() ![]() |
[11] |
V. Gupta, G. Tachev and A. M. Acu, Modified Kantorovich operators with better approximation properties, Numer. Algorithms, 81 (2019), 125-149.
doi: 10.1007/s11075-018-0538-7.![]() ![]() ![]() |
[12] |
M. Heimann, Direct and converse results for operators of Baskakov-Durrmeyer type, Approx. Theory Appl., 5 (1989), 105-127.
![]() ![]() |
[13] |
N. Ispir, On modified Baskakov operators on weighted spaces, Turkish J. Math., 25 (2001), 355-365.
![]() ![]() |
[14] |
N. Ispir and ![]() ![]() ![]() |
[15] |
A. Kajla, Direct estimates of certain Miheşan-Durrmeyer type operators, Adv. Oper. Theory., 2 (2017), 162-178.
doi: 10.22034/aot.1612-1079.![]() ![]() ![]() |
[16] |
J. P. King, Positive linear operators which preserve $x^2$, Acta Math. Hungar., 99 (2003), 203-208.
doi: 10.1023/A:1024571126455.![]() ![]() ![]() |
[17] |
A. Kumar and L. N. Mishra, Approximation by modified Jain-Baskakov-Stancu operators, Tbilisi Math. J., 10 (2017), 185-199.
doi: 10.1515/tmj-2017-0035.![]() ![]() ![]() |
[18] |
B. Lenze, On Lipschitz-type maximal functions and their smoothnes spaces, Nederl. Akad. Wetensch. Indag. Math., 50 (1988), 53-63.
![]() ![]() |
[19] |
M. Nasiruzzaman, N. Rao, S. Wazir and R. Kumar, Approximation on parametric extension of Baskakov-Durrmeyer operators on weighted space, J. Inequal. Appl., 2019 (2019), 103, 11pp.
doi: 10.1186/s13660-019-2055-1.![]() ![]() ![]() |
[20] |
A. Wafi and S. Khatoon, On the order of approximation of functions by generalized Baskakov operators, Indian J. Pure Appl. Math., 35 (2004), 347-358.
![]() ![]() |
[21] |
I. Yuksel and N. Ispir, Weighted approximation by a certain family of summation integral-type operators, Comput. Math. Appl., 52 (2006), 1463-1470.
doi: 10.1016/j.camwa.2006.08.031.![]() ![]() ![]() |
[22] |
C. Zhang and Z. Zhu, Preservation properties of the Baskakov-Kantorovich operators, Comput. Math. Appl., 57 (2009), 1450-1455.
doi: 10.1016/j.camwa.2009.01.027.![]() ![]() ![]() |