[1]
|
A. Ashikhmin and A. Barg, Minimal vectors in linear codes, IEEE Trans. Inform. Theory, 44 (1998), 2010-2017.
doi: 10.1109/18.705584.
|
[2]
|
G. R. Blakley, Safeguarding cryptographic keys, 1979 International Workshop on Managing Requirements Knowledge (MARK), 48 (1979), 313-317.
doi: 10.1109/MARK.1979.8817296.
|
[3]
|
Y. Cheng and X. Cao, Linear codes with few weights from weakly regular plateaued functions, Discrete Math., 344 (2021), 112597.
doi: 10.1016/j.disc.2021.112597.
|
[4]
|
R. B. Chilwant, T. S. Sarvagod, K. R. Kumbhar, P. N. Gunjgur and A. V. Vidhate, SISA: A secret-sharing scheme application for cloud environment, in 2019 International Conference on Communication and Electronics Systems, (2019), 638–643.
doi: 10.1109/ICCES45898.2019.9002527.
|
[5]
|
K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory, 61 (2015), 5835-5842.
doi: 10.1109/TIT.2015.2473861.
|
[6]
|
C. Ding and H. Niederreiter, Cyclotomic linear codes of order $3$, IEEE Trans. Inform. Theory, 53 (2007), 2274-2277.
doi: 10.1109/TIT.2007.896886.
|
[7]
|
C. Ding and J. Yuan, Covering and secret sharing with linear codes, Discrete Mathematics and Theoretical Computer Science, 2731 (2003), 11-25.
doi: 10.1007/3-540-45066-1_2.
|
[8]
|
T. A. Gulliver, Two new optimal ternary two-weight codes and strongly regular graphs, Discrete Math., 149 (1996), 83-92.
doi: 10.1016/0012-365X(94)00264-J.
|
[9]
|
Z. Heng, D. Li, J. Du and F. Chen, A family of projective two-weight linear codes, Des. Codes Cryptogr., 89 (2021), 1993-2007.
doi: 10.1007/s10623-021-00896-2.
|
[10]
|
Z. Heng, Q. Yue and C. Li, Three classes of linear codes with two or three weights, Discrete Math., 339 (2016), 2832-2847.
doi: 10.1016/j.disc.2016.05.033.
|
[11]
|
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridgeshire, 2003.
doi: 10.1017/CBO9780511807077.
|
[12]
|
G. Jian, Z. Lin and R. Feng, Two-weight and three-weight linear codes based on Weil sums, Finite Fields Appl., 57 (2019), 92-107.
doi: 10.1016/j.ffa.2019.02.001.
|
[13]
|
X. Kong and S. Yang, Complete weight enumerators of a class of linear codes with two or three weights, Discrete Math., 342 (2019), 3166-3176.
doi: 10.1016/j.disc.2019.06.025.
|
[14]
|
C. Li, Q. Yue and F. Fu, A construction of several classes of two-weight and three-weight linear codes, Appl. Algebra Engrg. Comm. Comput., 28 (2017), 11-30.
doi: 10.1007/s00200-016-0297-4.
|
[15]
|
R. Lidl and H. Niederreiter, Finite Fields, 2$^nd$ edition, Cambridge University Press, Cambridgeshire, 1997.
|
[16]
|
Y. Liu and Q. Zhao, E-voting scheme using secret sharing and K-anonymity, World Wide Web, 22 (2019), 1657-1667.
doi: 10.1007/s11280-018-0575-0.
|
[17]
|
H. Lu and S. Yang, Two classes of linear codes from Weil sums, IEEE Access, 8 (2020), 180471-180480.
doi: 10.1109/ACCESS.2020.3028141.
|
[18]
|
S. Mesnager, Y. Qi, H. Ru and C. Tang, Minimal linear codes from characteristic functions, IEEE Trans. Inform. Theory, 66 (2020), 5404-5413.
doi: 10.1109/TIT.2020.2978387.
|
[19]
|
B. Mounits, T. Etzion and S. Litsyn, New upper bounds on codes via association schemes and linear programming, Adv. Math. Commun., 1 (2007), 173-195.
doi: 10.3934/amc.2007.1.173.
|
[20]
|
A. Shamir, How to share a secret, Comm. ACM, 22 (1979), 612-613.
doi: 10.1145/359168.359176.
|
[21]
|
S. Yang, Complete weight enumerators of linear codes based on Weil sums, IEEE Communications Letters, 25 (2021), 346-350.
doi: 10.1109/LCOMM.2020.3027754.
|
[22]
|
S. Yang and Z. Yao, Complete weight enumerators of a class of linear codes, Discrete Math., 340 (2017), 729-739.
doi: 10.1016/j.disc.2016.11.029.
|
[23]
|
D. Zheng, Q. Zhao, X. Wang and Y. Zhang, A class of two or three weights linear codes and their complete weight enumerators, Discrete Math., 344 (2021), 112355.
doi: 10.1016/j.disc.2021.112355.
|