The present paper deals with complex form of a generalization of perturbed Bernstein-type operators. Quantitative upper estimates for simultaneous approximation, a qualitative Voronovskaja type result and the exact order of approximation by these operators attached to functions analytic in a disk centered at the origin with radius greater than 1 are obtained in this study.
Citation: |
[1] |
A. M. Acu and P. N. Agrawal, Better approximation of functions by genuine Bernstein-Durrmeyer type operators, Carpathian J. Math., 35 (2019), 125-136.
doi: 10.37193/CJM.2019.02.01.![]() ![]() ![]() |
[2] |
A. M. Acu and G. Başcanbaz-Tunca, Approximation by complex perturbed Bernstein-type operators, Results Math., 75 (2020), Paper No. 120, 16 pp.
doi: 10.1007/s00025-020-01244-x.![]() ![]() ![]() |
[3] |
A. M. Acu, G. Başcanbaz-Tunca and N. Çetin, Approximation by certain linking operators, Ann. Funct. Anal., 11 (2020), 1184-1202.
doi: 10.1007/s43034-020-00081-x.![]() ![]() ![]() |
[4] |
A. M. Acu, V. Gupta and G. Tachev, Better numerical approximation by Durrmeyer type operators, Results Math., 74 (2019), Paper No. 90, 24 pp.
doi: 10.1007/s00025-019-1019-6.![]() ![]() ![]() |
[5] |
S. N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités, Commun. Kharkov Math. Soc., 13 (1912/1913), 1-2.
![]() |
[6] |
N. Çetin, Approximation and geometric properties of complex $\alpha -$Bernstein operator, Results Math., 74 (2019), Paper No. 40, 16 pp.
doi: 10.1007/s00025-018-0953-z.![]() ![]() ![]() |
[7] |
N. Çetin, A new generalization of complex Stancu operators, Math. Methods Appl. Sci., 42 (2019), 5582-5594.
doi: 10.1002/mma.5622.![]() ![]() ![]() |
[8] |
N. Çetin and G. Başcanbaz-Tunca, Approximation by a new complex generalized Bernstein operators, An. Univ. Oradea Fasc. Mat., 26 (2019), 127-139.
![]() ![]() |
[9] |
R. DeVore and G. G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.
![]() ![]() |
[10] |
S. G. Gal, Approximation by Complex Bernstein and Convolution Type Operators, Series on Concrete and Applicable Mathematics, vol. 8, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009.
doi: 10.1142/9789814282437.![]() ![]() ![]() |
[11] |
V. Gupta, G. Tachev and A. M. Acu, Modified Kantorovich operators with better approximation properties, Numer. Algorithms, 81 (2019), 125-149.
doi: 10.1007/s11075-018-0538-7.![]() ![]() ![]() |
[12] |
H. Khosravian-Arab, M. Dehghan and M. R. Eslahchi, A new approach to improve the order of approximation of the Bernstein operators: Theory and applications, Numer. Algorithms, 77 (2018), 111-150.
doi: 10.1007/s11075-017-0307-z.![]() ![]() ![]() |
[13] |
G. G. Lorentz, Bernstein Polynomials, 2$^{nd}$ edition, Chelsea Publ, New York, 1986.
![]() ![]() |
[14] |
D. D. Stancu, Approximation of functions by means of a new generalized Bernstein operator, Calcolo, 20 (1983), 211-229.
doi: 10.1007/BF02575593.![]() ![]() ![]() |