\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On a special class of modified integral operators preserving some exponential functions

Abstract Full Text(HTML) Figure(4) Related Papers Cited by
  • In the present paper, we consider a general class of operators enriched with some properties in order to act on $ C^{\ast }( \mathbb{R} _{0}^{+}) $. We establish uniform convergence of the operators for every function in $ C^{\ast }( \mathbb{R} _{0}^{+}) $ on $ \mathbb{R} _{0}^{+} $. Then, a quantitative result is proved. A quantitative Voronovskaya-type estimate is obtained. Finally, some applications are provided concerning particular kernel functions.

    Mathematics Subject Classification: Primary: 41A35, 41A25; Secondary: 41A36, 47G10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  $ a = \frac{1}{2} $ and $ n = 5 $

    Figure 2.  $ a = \frac{3}{4} $ and $ n = 5 $

    Figure 3.  $ a = \frac{3}{10} $ and $ n = 5 $

    Figure 4.  $ a = \frac{1}{2} $ and $ n = 5 $

  • [1] T. Acar, A. Aral and H. Gonska, On Szász-Mirakyan operators preserving $e^2ax$, $a>0$, Mediterr. J. Math., 14 (2017), Paper No. 6, 14 pp. doi: 10.1007/s00009-016-0804-7.
    [2] T. Acar, M. Mursaleen and S. N. Deveci, Gamma operators reproducing exponential functions, Adv. Difference Equ., (2020), Paper No. 423, 13 pp. doi: 10.1186/s13662-020-02880-x.
    [3] O. AgratiniA. Aral and E. Deniz, On two classes of approximation processes of integral type, Positivity, 21 (2017), 1189-1199.  doi: 10.1007/s11117-016-0460-y.
    [4] F. Altomare and M. Campiti, Korovkin-Type Approximation Theory and its Applications, De Gruyter Studies in Mathematics 17., Walter De Gruyter & Co., Berlin, 1994. doi: 10.1515/9783110884586.
    [5] G. A. Anastassiou and S. G. Gal, Approximation Theory. Moduli of Continuity and Global Smoothness Preservation, Springer, Birkhäuser, Boston, 2000. doi: 10.1007/978-1-4612-1360-4.
    [6] L. Angeloni and G. Vinti, A review on approximation results for integral operators in the space of functions of bounded variation, J. Funct. Spaces, 2016 (2016), Art. ID 3843921, 11 pp. doi: 10.1155/2016/3843921.
    [7] P. M. Anselone and I. H. Sloan, Integral equations on the half line, J. of Integral Equations, 9 (1985), 3-23. 
    [8] A. Aral, On generalized Picard integral operators, Advances in Summability and Approximation Theory, (2018), 157–168. doi: 10.1007/978-981-13-3077-3_9.
    [9] A. AralD. Cárdenas-Morales and P. Garrancho, Bernstein-type operators that reproduce exponential functions, J. Math. Inequal., 12 (2018), 861-872.  doi: 10.7153/jmi-2018-12-64.
    [10] A. AralD. Inoan and I. Raşa, Approximation properties of Szász–Mirakyan operators preserving exponential functions, Positivity, 23 (2019), 233-246.  doi: 10.1007/s11117-018-0604-3.
    [11] A. Aral, B. Yılmaz and E. Deniz, A new construction of Picard operators on the semi-real axis, (2018), to appear.
    [12] F. Barbieri, Approximation by moment kernels, (Italian), Atti Sem. Mat. Fis. Univ. Modena, 32 (1983), 308-328. 
    [13] C. Bardaro and I. Mantellini, Voronovskaja-type estimates for Mellin convolution operators, Results Math., 50 (2007), 1-16.  doi: 10.1007/s00025-006-0231-3.
    [14] C. Bardaro and I. Mantellini, A quantitative Voronovskaya formula for Mellin convolution operators, Mediterr. J. Math., 7 (2010), 483-501.  doi: 10.1007/s00009-010-0062-z.
    [15] C. Bardaro and I. Mantellini, Multivariate moment type operators: Approximation properties in Orlicz spaces, J. Math. Inequal., 2 (2008), 247-259.  doi: 10.7153/jmi-02-22.
    [16] C. Bardaro, I. Mantellini, G. Uysal and B. Yılmaz, A class of integral operators that fix exponential functions, Mediterr. J. Math., 18 (2021), Paper No. 179, 21 pp. doi: 10.1007/s00009-021-01819-0.
    [17] C. Bardaro, J. Musielak and G. Vinti, Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications 9., Walter De Gruyter & Co., Berlin, 2003. doi: 10.1515/9783110199277.
    [18] H. Bohman, On approximation of continuous and of analytic functions, Ark. Mat., 2 (1952), 43-56.  doi: 10.1007/BF02591381.
    [19] B. D. Boyanov and V. M. Veselinov, A note on the approximation of functions in an infinite interval by linear positive operators, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), 14 (1970), 9-13. 
    [20] P. L. Butzer and  R. J. NesselFourier Analysis and Approximation Vol. 1: One-Dimensional Theory, Pure and Applied Mathematics, Vol. 40. Academic Press, New York-London, 1971.  doi: 10.1007/978-3-0348-7448-9.
    [21] P. L. Butzer and S. Jansche, A direct approach to the Mellin transform, J. Fourier Anal. Appl., 3 (1997), 325-376.  doi: 10.1007/BF02649101.
    [22] P. L. Butzer and R. L. Stens, Linear prediction by samples from the past, Advanced Topics in Shannon Sampling and Interpolation Theory, Springer Texts Electrical Eng., Springer, New York, (1993), 157–183. doi: 10.1007/978-1-4613-9757-1_5.
    [23] D. Costarelli and G. Vinti, Approximation by nonlinear multivariate sampling Kantorovich type operators and applications to image processing, Numer. Funct. Anal. Optim., 34 (2013), 819-844.  doi: 10.1080/01630563.2013.767833.
    [24] D. Costarelli and G. Vinti, Asymptotic expansions and Voronovskaja type theorems for the multivariate neural network operators, Mathematical Foundations of Computing, 3 (2020), 41-50.  doi: 10.3934/mfc.2020004.
    [25] A. D. Gadžiev, A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P. P. Korovkin's theorem, (Russian), Dokl. Akad. Nauk SSSR, 218 (1974), 1001-1004. 
    [26] V. Gupta and V. K. Singh, Modified Post-Widder operators preserving exponential functions, Advances in Mathematical Methods and High Performance Computing, 41 (2019), 181-192.  doi: 10.1007/978-3-030-02487-1_10.
    [27] V. Gupta and G. Tachev, On approximation properties of Phillips operators preserving exponential functions, Mediterr. J. Math., 14 (2017), Paper No. 177, 12 pp. doi: 10.1007/s00009-017-0981-z.
    [28] A. Holhoş, The rate of approximation of functions in an infinite interval by positive linear operators, Stud. Univ. Babeş–Bolyai Math., 55 (2010), 133–142.
    [29] A. Holhoş, Quantitative estimates of Voronovskaya type in weighted spaces, Results Math., 73 (2018), Paper No. 53, 11 pp. doi: 10.1007/s00025-018-0814-9.
    [30] H. Karslı, Convergence and rate of convergence by nonlinear singular integral operators depending on two parameters, Appl. Anal., 85 (2006), 781-791.  doi: 10.1080/00036810600712665.
    [31] J. P. King, Positive linear operators which preserve x2, Acta Math. Hungar., 99 (2003), 203-208.  doi: 10.1023/A:1024571126455.
    [32] P. P. Korovkin, On convergence of linear positive operators in the spaces of continuous functions, (Russian), Doklady Akad. Nauk. SSSR (N.S.), 90 (1953), 961-964. 
    [33] P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publishing Corp., Delhi, 1960.
    [34] A. Lupaş and M. Müller, Approximationseigenschaften der Gammaoperatoren, (German), Math. Z., 98 (1967), 208-226.  doi: 10.1007/BF01112415.
    [35] R. G. Mamedov, The Mellin Transform and Approximation Theory, (Russian) "Elm", Baku, 1991.
    [36] C. P. May, Saturation and inverse theorems for combinations of a class of exponential-type operators, Canadian J. Math., 28 (1976), 1224-1250.  doi: 10.4153/CJM-1976-123-8.
    [37] I. P. Natanson, Theory of Functions of a Real Variable Vol. Ⅱ., Frederick Ungar Pub. Co., New York, 1961.
    [38] R. S. Phillips, An inversion formula for Laplace transforms and semi-groups of linear operators, Ann. of Math., 59 (1954), 325-356.  doi: 10.2307/1969697.
    [39] L. Rempulska and K. Tomczak, On some properties of the Picard operators, Arch. Math. (Brno), 45 (2009), 125-135. 
    [40] L. L. SchumakerSpline Functions: Basic Theory, 3$^rd$ edition, Cambridge University Press, Cambridge, 2007.  doi: 10.1017/CBO9780511618994.
    [41] T. Świderski and E. Wachnicki, Nonlinear singular integrals depending on two parameters, Comment. Math. (Prace Mat.), 40 (2000), 181-189. 
    [42] E. V. Voronovskaya, Determination of the asymptotic form of approximation of functions by the polynomials of S. N. Bernstein, Dokl. Akad. Nauk SSSR, A, (1932), 79–85.
    [43] E. Wachnicki and G. Krech, Approximation of functions by nonlinear singular integral operators depending on two parameters, Publ. Math. Debrecen, 92 (2018), 481-494.  doi: 10.5486/PMD.2018.8080.
    [44] D. V. WidderThe Laplace Transform, Princeton Mathematical Series, Vol. 6. Princeton Univ. Press, Princeton, 1941. 
    [45] B. YılmazG. Uysal and A. Aral, Reconstruction of two approximation processes in order to reproduce $e^ax$ and $e^2ax$, $a>0$, J. Math. Inequal., 15 (2021), 1101-1118.  doi: 10.7153/jmi-2021-15-75.
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(1374) PDF downloads(536) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return